Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Examples of categories
Thin categories
thincinv
Metamath Proof Explorer
Description: In a thin category, F is an inverse of G iff F is a
section of G . Example 7.20(7) of Adamek p. 107. (Contributed by Zhi Wang , 24-Sep-2024)
Ref
Expression
Hypotheses
thincsect.c
⊢ ( 𝜑 → 𝐶 ∈ ThinCat )
thincsect.b
⊢ 𝐵 = ( Base ‘ 𝐶 )
thincsect.x
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 )
thincsect.y
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 )
thincsect.s
⊢ 𝑆 = ( Sect ‘ 𝐶 )
thincinv.n
⊢ 𝑁 = ( Inv ‘ 𝐶 )
Assertion
thincinv
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) )
Proof
Step
Hyp
Ref
Expression
1
thincsect.c
⊢ ( 𝜑 → 𝐶 ∈ ThinCat )
2
thincsect.b
⊢ 𝐵 = ( Base ‘ 𝐶 )
3
thincsect.x
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 )
4
thincsect.y
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 )
5
thincsect.s
⊢ 𝑆 = ( Sect ‘ 𝐶 )
6
thincinv.n
⊢ 𝑁 = ( Inv ‘ 𝐶 )
7
1
thinccd
⊢ ( 𝜑 → 𝐶 ∈ Cat )
8
2 6 7 3 4 5
isinv
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) )
9
1 2 3 4 5
thincsect2
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) )
10
9
biimpa
⊢ ( ( 𝜑 ∧ 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) → 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 )
11
8 10
mpbiran3d
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) )