Metamath Proof Explorer


Theorem thincinv

Description: In a thin category, F is an inverse of G iff F is a section of G (Contributed by Zhi Wang, 24-Sep-2024)

Ref Expression
Hypotheses thincsect.c ( 𝜑𝐶 ∈ ThinCat )
thincsect.b 𝐵 = ( Base ‘ 𝐶 )
thincsect.x ( 𝜑𝑋𝐵 )
thincsect.y ( 𝜑𝑌𝐵 )
thincsect.s 𝑆 = ( Sect ‘ 𝐶 )
thincinv.n 𝑁 = ( Inv ‘ 𝐶 )
Assertion thincinv ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) )

Proof

Step Hyp Ref Expression
1 thincsect.c ( 𝜑𝐶 ∈ ThinCat )
2 thincsect.b 𝐵 = ( Base ‘ 𝐶 )
3 thincsect.x ( 𝜑𝑋𝐵 )
4 thincsect.y ( 𝜑𝑌𝐵 )
5 thincsect.s 𝑆 = ( Sect ‘ 𝐶 )
6 thincinv.n 𝑁 = ( Inv ‘ 𝐶 )
7 1 thinccd ( 𝜑𝐶 ∈ Cat )
8 2 6 7 3 4 5 isinv ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) )
9 1 2 3 4 5 thincsect2 ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) )
10 9 biimpa ( ( 𝜑𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) → 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 )
11 8 10 mpbiran3d ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) )