Step |
Hyp |
Ref |
Expression |
1 |
|
topfneec2.1 |
|- .~ = ( Fne i^i `' Fne ) |
2 |
1
|
fneval |
|- ( ( J e. Top /\ K e. Top ) -> ( J .~ K <-> ( topGen ` J ) = ( topGen ` K ) ) ) |
3 |
1
|
fneer |
|- .~ Er _V |
4 |
3
|
a1i |
|- ( ( J e. Top /\ K e. Top ) -> .~ Er _V ) |
5 |
|
elex |
|- ( J e. Top -> J e. _V ) |
6 |
5
|
adantr |
|- ( ( J e. Top /\ K e. Top ) -> J e. _V ) |
7 |
4 6
|
erth |
|- ( ( J e. Top /\ K e. Top ) -> ( J .~ K <-> [ J ] .~ = [ K ] .~ ) ) |
8 |
|
tgtop |
|- ( J e. Top -> ( topGen ` J ) = J ) |
9 |
|
tgtop |
|- ( K e. Top -> ( topGen ` K ) = K ) |
10 |
8 9
|
eqeqan12d |
|- ( ( J e. Top /\ K e. Top ) -> ( ( topGen ` J ) = ( topGen ` K ) <-> J = K ) ) |
11 |
2 7 10
|
3bitr3d |
|- ( ( J e. Top /\ K e. Top ) -> ( [ J ] .~ = [ K ] .~ <-> J = K ) ) |