Step |
Hyp |
Ref |
Expression |
1 |
|
topfneec2.1 |
⊢ ∼ = ( Fne ∩ ◡ Fne ) |
2 |
1
|
fneval |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐽 ∼ 𝐾 ↔ ( topGen ‘ 𝐽 ) = ( topGen ‘ 𝐾 ) ) ) |
3 |
1
|
fneer |
⊢ ∼ Er V |
4 |
3
|
a1i |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ∼ Er V ) |
5 |
|
elex |
⊢ ( 𝐽 ∈ Top → 𝐽 ∈ V ) |
6 |
5
|
adantr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → 𝐽 ∈ V ) |
7 |
4 6
|
erth |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐽 ∼ 𝐾 ↔ [ 𝐽 ] ∼ = [ 𝐾 ] ∼ ) ) |
8 |
|
tgtop |
⊢ ( 𝐽 ∈ Top → ( topGen ‘ 𝐽 ) = 𝐽 ) |
9 |
|
tgtop |
⊢ ( 𝐾 ∈ Top → ( topGen ‘ 𝐾 ) = 𝐾 ) |
10 |
8 9
|
eqeqan12d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( ( topGen ‘ 𝐽 ) = ( topGen ‘ 𝐾 ) ↔ 𝐽 = 𝐾 ) ) |
11 |
2 7 10
|
3bitr3d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( [ 𝐽 ] ∼ = [ 𝐾 ] ∼ ↔ 𝐽 = 𝐾 ) ) |