| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fneval.1 |
⊢ ∼ = ( Fne ∩ ◡ Fne ) |
| 2 |
1
|
breqi |
⊢ ( 𝐴 ∼ 𝐵 ↔ 𝐴 ( Fne ∩ ◡ Fne ) 𝐵 ) |
| 3 |
|
brin |
⊢ ( 𝐴 ( Fne ∩ ◡ Fne ) 𝐵 ↔ ( 𝐴 Fne 𝐵 ∧ 𝐴 ◡ Fne 𝐵 ) ) |
| 4 |
|
fnerel |
⊢ Rel Fne |
| 5 |
4
|
relbrcnv |
⊢ ( 𝐴 ◡ Fne 𝐵 ↔ 𝐵 Fne 𝐴 ) |
| 6 |
5
|
anbi2i |
⊢ ( ( 𝐴 Fne 𝐵 ∧ 𝐴 ◡ Fne 𝐵 ) ↔ ( 𝐴 Fne 𝐵 ∧ 𝐵 Fne 𝐴 ) ) |
| 7 |
3 6
|
bitri |
⊢ ( 𝐴 ( Fne ∩ ◡ Fne ) 𝐵 ↔ ( 𝐴 Fne 𝐵 ∧ 𝐵 Fne 𝐴 ) ) |
| 8 |
2 7
|
bitri |
⊢ ( 𝐴 ∼ 𝐵 ↔ ( 𝐴 Fne 𝐵 ∧ 𝐵 Fne 𝐴 ) ) |
| 9 |
|
eqid |
⊢ ∪ 𝐴 = ∪ 𝐴 |
| 10 |
|
eqid |
⊢ ∪ 𝐵 = ∪ 𝐵 |
| 11 |
9 10
|
isfne4b |
⊢ ( 𝐵 ∈ 𝑊 → ( 𝐴 Fne 𝐵 ↔ ( ∪ 𝐴 = ∪ 𝐵 ∧ ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐵 ) ) ) ) |
| 12 |
10 9
|
isfne4b |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐵 Fne 𝐴 ↔ ( ∪ 𝐵 = ∪ 𝐴 ∧ ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐴 ) ) ) ) |
| 13 |
|
eqcom |
⊢ ( ∪ 𝐵 = ∪ 𝐴 ↔ ∪ 𝐴 = ∪ 𝐵 ) |
| 14 |
13
|
anbi1i |
⊢ ( ( ∪ 𝐵 = ∪ 𝐴 ∧ ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐴 ) ) ↔ ( ∪ 𝐴 = ∪ 𝐵 ∧ ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐴 ) ) ) |
| 15 |
12 14
|
bitrdi |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐵 Fne 𝐴 ↔ ( ∪ 𝐴 = ∪ 𝐵 ∧ ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐴 ) ) ) ) |
| 16 |
11 15
|
bi2anan9r |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 Fne 𝐵 ∧ 𝐵 Fne 𝐴 ) ↔ ( ( ∪ 𝐴 = ∪ 𝐵 ∧ ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐵 ) ) ∧ ( ∪ 𝐴 = ∪ 𝐵 ∧ ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐴 ) ) ) ) ) |
| 17 |
|
eqss |
⊢ ( ( topGen ‘ 𝐴 ) = ( topGen ‘ 𝐵 ) ↔ ( ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐵 ) ∧ ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐴 ) ) ) |
| 18 |
17
|
anbi2i |
⊢ ( ( ∪ 𝐴 = ∪ 𝐵 ∧ ( topGen ‘ 𝐴 ) = ( topGen ‘ 𝐵 ) ) ↔ ( ∪ 𝐴 = ∪ 𝐵 ∧ ( ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐵 ) ∧ ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐴 ) ) ) ) |
| 19 |
|
anandi |
⊢ ( ( ∪ 𝐴 = ∪ 𝐵 ∧ ( ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐵 ) ∧ ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐴 ) ) ) ↔ ( ( ∪ 𝐴 = ∪ 𝐵 ∧ ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐵 ) ) ∧ ( ∪ 𝐴 = ∪ 𝐵 ∧ ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐴 ) ) ) ) |
| 20 |
18 19
|
bitri |
⊢ ( ( ∪ 𝐴 = ∪ 𝐵 ∧ ( topGen ‘ 𝐴 ) = ( topGen ‘ 𝐵 ) ) ↔ ( ( ∪ 𝐴 = ∪ 𝐵 ∧ ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐵 ) ) ∧ ( ∪ 𝐴 = ∪ 𝐵 ∧ ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐴 ) ) ) ) |
| 21 |
16 20
|
bitr4di |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 Fne 𝐵 ∧ 𝐵 Fne 𝐴 ) ↔ ( ∪ 𝐴 = ∪ 𝐵 ∧ ( topGen ‘ 𝐴 ) = ( topGen ‘ 𝐵 ) ) ) ) |
| 22 |
|
unieq |
⊢ ( ( topGen ‘ 𝐴 ) = ( topGen ‘ 𝐵 ) → ∪ ( topGen ‘ 𝐴 ) = ∪ ( topGen ‘ 𝐵 ) ) |
| 23 |
|
unitg |
⊢ ( 𝐴 ∈ 𝑉 → ∪ ( topGen ‘ 𝐴 ) = ∪ 𝐴 ) |
| 24 |
|
unitg |
⊢ ( 𝐵 ∈ 𝑊 → ∪ ( topGen ‘ 𝐵 ) = ∪ 𝐵 ) |
| 25 |
23 24
|
eqeqan12d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∪ ( topGen ‘ 𝐴 ) = ∪ ( topGen ‘ 𝐵 ) ↔ ∪ 𝐴 = ∪ 𝐵 ) ) |
| 26 |
22 25
|
imbitrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( topGen ‘ 𝐴 ) = ( topGen ‘ 𝐵 ) → ∪ 𝐴 = ∪ 𝐵 ) ) |
| 27 |
26
|
pm4.71rd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( topGen ‘ 𝐴 ) = ( topGen ‘ 𝐵 ) ↔ ( ∪ 𝐴 = ∪ 𝐵 ∧ ( topGen ‘ 𝐴 ) = ( topGen ‘ 𝐵 ) ) ) ) |
| 28 |
21 27
|
bitr4d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 Fne 𝐵 ∧ 𝐵 Fne 𝐴 ) ↔ ( topGen ‘ 𝐴 ) = ( topGen ‘ 𝐵 ) ) ) |
| 29 |
8 28
|
bitrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∼ 𝐵 ↔ ( topGen ‘ 𝐴 ) = ( topGen ‘ 𝐵 ) ) ) |