Step |
Hyp |
Ref |
Expression |
1 |
|
isfne.1 |
⊢ 𝑋 = ∪ 𝐴 |
2 |
|
isfne.2 |
⊢ 𝑌 = ∪ 𝐵 |
3 |
1 2
|
isfne4 |
⊢ ( 𝐴 Fne 𝐵 ↔ ( 𝑋 = 𝑌 ∧ 𝐴 ⊆ ( topGen ‘ 𝐵 ) ) ) |
4 |
|
simpr |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌 ) → 𝑋 = 𝑌 ) |
5 |
4 1 2
|
3eqtr3g |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌 ) → ∪ 𝐴 = ∪ 𝐵 ) |
6 |
|
uniexg |
⊢ ( 𝐵 ∈ 𝑉 → ∪ 𝐵 ∈ V ) |
7 |
6
|
adantr |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌 ) → ∪ 𝐵 ∈ V ) |
8 |
5 7
|
eqeltrd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌 ) → ∪ 𝐴 ∈ V ) |
9 |
|
uniexb |
⊢ ( 𝐴 ∈ V ↔ ∪ 𝐴 ∈ V ) |
10 |
8 9
|
sylibr |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌 ) → 𝐴 ∈ V ) |
11 |
|
simpl |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌 ) → 𝐵 ∈ 𝑉 ) |
12 |
|
tgss3 |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) → ( ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐵 ) ↔ 𝐴 ⊆ ( topGen ‘ 𝐵 ) ) ) |
13 |
10 11 12
|
syl2anc |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌 ) → ( ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐵 ) ↔ 𝐴 ⊆ ( topGen ‘ 𝐵 ) ) ) |
14 |
13
|
pm5.32da |
⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝑋 = 𝑌 ∧ ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐵 ) ) ↔ ( 𝑋 = 𝑌 ∧ 𝐴 ⊆ ( topGen ‘ 𝐵 ) ) ) ) |
15 |
3 14
|
bitr4id |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 Fne 𝐵 ↔ ( 𝑋 = 𝑌 ∧ ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐵 ) ) ) ) |