Metamath Proof Explorer


Theorem isfne4b

Description: A condition for a topology to be finer than another. (Contributed by Jeff Hankins, 28-Sep-2009) (Revised by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypotheses isfne.1 X = A
isfne.2 Y = B
Assertion isfne4b B V A Fne B X = Y topGen A topGen B

Proof

Step Hyp Ref Expression
1 isfne.1 X = A
2 isfne.2 Y = B
3 1 2 isfne4 A Fne B X = Y A topGen B
4 simpr B V X = Y X = Y
5 4 1 2 3eqtr3g B V X = Y A = B
6 uniexg B V B V
7 6 adantr B V X = Y B V
8 5 7 eqeltrd B V X = Y A V
9 uniexb A V A V
10 8 9 sylibr B V X = Y A V
11 simpl B V X = Y B V
12 tgss3 A V B V topGen A topGen B A topGen B
13 10 11 12 syl2anc B V X = Y topGen A topGen B A topGen B
14 13 pm5.32da B V X = Y topGen A topGen B X = Y A topGen B
15 3 14 bitr4id B V A Fne B X = Y topGen A topGen B