Step |
Hyp |
Ref |
Expression |
1 |
|
fnessref.1 |
⊢ 𝑋 = ∪ 𝐴 |
2 |
|
fnessref.2 |
⊢ 𝑌 = ∪ 𝐵 |
3 |
|
fnerel |
⊢ Rel Fne |
4 |
3
|
brrelex2i |
⊢ ( 𝐴 Fne 𝐵 → 𝐵 ∈ V ) |
5 |
4
|
adantl |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) → 𝐵 ∈ V ) |
6 |
|
rabexg |
⊢ ( 𝐵 ∈ V → { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ∈ V ) |
7 |
5 6
|
syl |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) → { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ∈ V ) |
8 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ⊆ 𝐵 |
9 |
8
|
a1i |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) → { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ⊆ 𝐵 ) |
10 |
1
|
eleq2i |
⊢ ( 𝑡 ∈ 𝑋 ↔ 𝑡 ∈ ∪ 𝐴 ) |
11 |
|
eluni |
⊢ ( 𝑡 ∈ ∪ 𝐴 ↔ ∃ 𝑧 ( 𝑡 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴 ) ) |
12 |
10 11
|
bitri |
⊢ ( 𝑡 ∈ 𝑋 ↔ ∃ 𝑧 ( 𝑡 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴 ) ) |
13 |
|
fnessex |
⊢ ( ( 𝐴 Fne 𝐵 ∧ 𝑧 ∈ 𝐴 ∧ 𝑡 ∈ 𝑧 ) → ∃ 𝑥 ∈ 𝐵 ( 𝑡 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑧 ) ) |
14 |
13
|
3expia |
⊢ ( ( 𝐴 Fne 𝐵 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑧 → ∃ 𝑥 ∈ 𝐵 ( 𝑡 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑧 ) ) ) |
15 |
14
|
adantll |
⊢ ( ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑧 → ∃ 𝑥 ∈ 𝐵 ( 𝑡 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑧 ) ) ) |
16 |
|
sseq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝑧 ) ) |
17 |
16
|
rspcev |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑧 ) → ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) |
18 |
17
|
ex |
⊢ ( 𝑧 ∈ 𝐴 → ( 𝑥 ⊆ 𝑧 → ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) ) |
19 |
18
|
adantl |
⊢ ( ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 ⊆ 𝑧 → ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) ) |
20 |
19
|
anim2d |
⊢ ( ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑡 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑧 ) → ( 𝑡 ∈ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) ) ) |
21 |
20
|
reximdv |
⊢ ( ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) ∧ 𝑧 ∈ 𝐴 ) → ( ∃ 𝑥 ∈ 𝐵 ( 𝑡 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑧 ) → ∃ 𝑥 ∈ 𝐵 ( 𝑡 ∈ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) ) ) |
22 |
15 21
|
syld |
⊢ ( ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑧 → ∃ 𝑥 ∈ 𝐵 ( 𝑡 ∈ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) ) ) |
23 |
22
|
ex |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) → ( 𝑧 ∈ 𝐴 → ( 𝑡 ∈ 𝑧 → ∃ 𝑥 ∈ 𝐵 ( 𝑡 ∈ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) ) ) ) |
24 |
23
|
com23 |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) → ( 𝑡 ∈ 𝑧 → ( 𝑧 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐵 ( 𝑡 ∈ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) ) ) ) |
25 |
24
|
impd |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) → ( ( 𝑡 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐵 ( 𝑡 ∈ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) ) ) |
26 |
25
|
exlimdv |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) → ( ∃ 𝑧 ( 𝑡 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐵 ( 𝑡 ∈ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) ) ) |
27 |
12 26
|
syl5bi |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) → ( 𝑡 ∈ 𝑋 → ∃ 𝑥 ∈ 𝐵 ( 𝑡 ∈ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) ) ) |
28 |
|
elunirab |
⊢ ( 𝑡 ∈ ∪ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ↔ ∃ 𝑥 ∈ 𝐵 ( 𝑡 ∈ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) ) |
29 |
27 28
|
syl6ibr |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) → ( 𝑡 ∈ 𝑋 → 𝑡 ∈ ∪ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ) ) |
30 |
29
|
ssrdv |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) → 𝑋 ⊆ ∪ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ) |
31 |
8
|
unissi |
⊢ ∪ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ⊆ ∪ 𝐵 |
32 |
|
simpl |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) → 𝑋 = 𝑌 ) |
33 |
32 2
|
eqtr2di |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) → ∪ 𝐵 = 𝑋 ) |
34 |
31 33
|
sseqtrid |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) → ∪ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ⊆ 𝑋 ) |
35 |
30 34
|
eqssd |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) → 𝑋 = ∪ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ) |
36 |
|
fnessex |
⊢ ( ( 𝐴 Fne 𝐵 ∧ 𝑧 ∈ 𝐴 ∧ 𝑡 ∈ 𝑧 ) → ∃ 𝑤 ∈ 𝐵 ( 𝑡 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) |
37 |
36
|
3expb |
⊢ ( ( 𝐴 Fne 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑡 ∈ 𝑧 ) ) → ∃ 𝑤 ∈ 𝐵 ( 𝑡 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) |
38 |
37
|
adantll |
⊢ ( ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑡 ∈ 𝑧 ) ) → ∃ 𝑤 ∈ 𝐵 ( 𝑡 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) |
39 |
|
simpl |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) → 𝑤 ∈ 𝐵 ) |
40 |
39
|
a1i |
⊢ ( ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑡 ∈ 𝑧 ) ) → ( ( 𝑤 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) → 𝑤 ∈ 𝐵 ) ) |
41 |
|
sseq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑤 ⊆ 𝑦 ↔ 𝑤 ⊆ 𝑧 ) ) |
42 |
41
|
rspcev |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ⊆ 𝑧 ) → ∃ 𝑦 ∈ 𝐴 𝑤 ⊆ 𝑦 ) |
43 |
42
|
expcom |
⊢ ( 𝑤 ⊆ 𝑧 → ( 𝑧 ∈ 𝐴 → ∃ 𝑦 ∈ 𝐴 𝑤 ⊆ 𝑦 ) ) |
44 |
43
|
ad2antll |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) → ( 𝑧 ∈ 𝐴 → ∃ 𝑦 ∈ 𝐴 𝑤 ⊆ 𝑦 ) ) |
45 |
44
|
com12 |
⊢ ( 𝑧 ∈ 𝐴 → ( ( 𝑤 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) → ∃ 𝑦 ∈ 𝐴 𝑤 ⊆ 𝑦 ) ) |
46 |
45
|
ad2antrl |
⊢ ( ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑡 ∈ 𝑧 ) ) → ( ( 𝑤 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) → ∃ 𝑦 ∈ 𝐴 𝑤 ⊆ 𝑦 ) ) |
47 |
40 46
|
jcad |
⊢ ( ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑡 ∈ 𝑧 ) ) → ( ( 𝑤 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) → ( 𝑤 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝐴 𝑤 ⊆ 𝑦 ) ) ) |
48 |
|
sseq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 ⊆ 𝑦 ↔ 𝑤 ⊆ 𝑦 ) ) |
49 |
48
|
rexbidv |
⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 𝑤 ⊆ 𝑦 ) ) |
50 |
49
|
elrab |
⊢ ( 𝑤 ∈ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ↔ ( 𝑤 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝐴 𝑤 ⊆ 𝑦 ) ) |
51 |
47 50
|
syl6ibr |
⊢ ( ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑡 ∈ 𝑧 ) ) → ( ( 𝑤 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) → 𝑤 ∈ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ) ) |
52 |
|
simpr |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) → ( 𝑡 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) |
53 |
52
|
a1i |
⊢ ( ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑡 ∈ 𝑧 ) ) → ( ( 𝑤 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) → ( 𝑡 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
54 |
51 53
|
jcad |
⊢ ( ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑡 ∈ 𝑧 ) ) → ( ( 𝑤 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) → ( 𝑤 ∈ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ∧ ( 𝑡 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
55 |
54
|
reximdv2 |
⊢ ( ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑡 ∈ 𝑧 ) ) → ( ∃ 𝑤 ∈ 𝐵 ( 𝑡 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) → ∃ 𝑤 ∈ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ( 𝑡 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
56 |
38 55
|
mpd |
⊢ ( ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑡 ∈ 𝑧 ) ) → ∃ 𝑤 ∈ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ( 𝑡 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) |
57 |
56
|
ralrimivva |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) → ∀ 𝑧 ∈ 𝐴 ∀ 𝑡 ∈ 𝑧 ∃ 𝑤 ∈ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ( 𝑡 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) |
58 |
|
eqid |
⊢ ∪ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } = ∪ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } |
59 |
1 58
|
isfne2 |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ∈ V → ( 𝐴 Fne { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ↔ ( 𝑋 = ∪ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑡 ∈ 𝑧 ∃ 𝑤 ∈ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ( 𝑡 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
60 |
5 6 59
|
3syl |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) → ( 𝐴 Fne { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ↔ ( 𝑋 = ∪ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑡 ∈ 𝑧 ∃ 𝑤 ∈ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ( 𝑡 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
61 |
35 57 60
|
mpbir2and |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) → 𝐴 Fne { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ) |
62 |
|
sseq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ⊆ 𝑦 ↔ 𝑧 ⊆ 𝑦 ) ) |
63 |
62
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ⊆ 𝑦 ) ) |
64 |
63
|
elrab |
⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ↔ ( 𝑧 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝐴 𝑧 ⊆ 𝑦 ) ) |
65 |
|
sseq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑧 ⊆ 𝑦 ↔ 𝑧 ⊆ 𝑤 ) ) |
66 |
65
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ 𝐴 𝑧 ⊆ 𝑦 ↔ ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) |
67 |
66
|
biimpi |
⊢ ( ∃ 𝑦 ∈ 𝐴 𝑧 ⊆ 𝑦 → ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) |
68 |
67
|
adantl |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝐴 𝑧 ⊆ 𝑦 ) → ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) |
69 |
68
|
a1i |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) → ( ( 𝑧 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝐴 𝑧 ⊆ 𝑦 ) → ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) ) |
70 |
64 69
|
syl5bi |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) → ( 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } → ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) ) |
71 |
70
|
ralrimiv |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) → ∀ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) |
72 |
58 1
|
isref |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ∈ V → ( { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } Ref 𝐴 ↔ ( 𝑋 = ∪ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ∧ ∀ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) ) ) |
73 |
5 6 72
|
3syl |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) → ( { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } Ref 𝐴 ↔ ( 𝑋 = ∪ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ∧ ∀ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) ) ) |
74 |
35 71 73
|
mpbir2and |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) → { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } Ref 𝐴 ) |
75 |
9 61 74
|
jca32 |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) → ( { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ⊆ 𝐵 ∧ ( 𝐴 Fne { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ∧ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } Ref 𝐴 ) ) ) |
76 |
|
sseq1 |
⊢ ( 𝑐 = { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } → ( 𝑐 ⊆ 𝐵 ↔ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ⊆ 𝐵 ) ) |
77 |
|
breq2 |
⊢ ( 𝑐 = { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } → ( 𝐴 Fne 𝑐 ↔ 𝐴 Fne { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ) ) |
78 |
|
breq1 |
⊢ ( 𝑐 = { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } → ( 𝑐 Ref 𝐴 ↔ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } Ref 𝐴 ) ) |
79 |
77 78
|
anbi12d |
⊢ ( 𝑐 = { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } → ( ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ↔ ( 𝐴 Fne { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ∧ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } Ref 𝐴 ) ) ) |
80 |
76 79
|
anbi12d |
⊢ ( 𝑐 = { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } → ( ( 𝑐 ⊆ 𝐵 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) ↔ ( { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ⊆ 𝐵 ∧ ( 𝐴 Fne { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ∧ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } Ref 𝐴 ) ) ) ) |
81 |
80
|
spcegv |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ∈ V → ( ( { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ⊆ 𝐵 ∧ ( 𝐴 Fne { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ∧ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } Ref 𝐴 ) ) → ∃ 𝑐 ( 𝑐 ⊆ 𝐵 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) ) ) |
82 |
7 75 81
|
sylc |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 Fne 𝐵 ) → ∃ 𝑐 ( 𝑐 ⊆ 𝐵 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) ) |
83 |
82
|
ex |
⊢ ( 𝑋 = 𝑌 → ( 𝐴 Fne 𝐵 → ∃ 𝑐 ( 𝑐 ⊆ 𝐵 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) ) ) |
84 |
|
simprrl |
⊢ ( ( 𝑋 = 𝑌 ∧ ( 𝑐 ⊆ 𝐵 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) ) → 𝐴 Fne 𝑐 ) |
85 |
|
eqid |
⊢ ∪ 𝑐 = ∪ 𝑐 |
86 |
1 85
|
fnebas |
⊢ ( 𝐴 Fne 𝑐 → 𝑋 = ∪ 𝑐 ) |
87 |
84 86
|
syl |
⊢ ( ( 𝑋 = 𝑌 ∧ ( 𝑐 ⊆ 𝐵 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) ) → 𝑋 = ∪ 𝑐 ) |
88 |
|
simpl |
⊢ ( ( 𝑋 = 𝑌 ∧ ( 𝑐 ⊆ 𝐵 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) ) → 𝑋 = 𝑌 ) |
89 |
87 88
|
eqtr3d |
⊢ ( ( 𝑋 = 𝑌 ∧ ( 𝑐 ⊆ 𝐵 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) ) → ∪ 𝑐 = 𝑌 ) |
90 |
89 2
|
eqtrdi |
⊢ ( ( 𝑋 = 𝑌 ∧ ( 𝑐 ⊆ 𝐵 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) ) → ∪ 𝑐 = ∪ 𝐵 ) |
91 |
|
vuniex |
⊢ ∪ 𝑐 ∈ V |
92 |
90 91
|
eqeltrrdi |
⊢ ( ( 𝑋 = 𝑌 ∧ ( 𝑐 ⊆ 𝐵 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) ) → ∪ 𝐵 ∈ V ) |
93 |
|
uniexb |
⊢ ( 𝐵 ∈ V ↔ ∪ 𝐵 ∈ V ) |
94 |
92 93
|
sylibr |
⊢ ( ( 𝑋 = 𝑌 ∧ ( 𝑐 ⊆ 𝐵 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) ) → 𝐵 ∈ V ) |
95 |
|
simprl |
⊢ ( ( 𝑋 = 𝑌 ∧ ( 𝑐 ⊆ 𝐵 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) ) → 𝑐 ⊆ 𝐵 ) |
96 |
85 2
|
fness |
⊢ ( ( 𝐵 ∈ V ∧ 𝑐 ⊆ 𝐵 ∧ ∪ 𝑐 = 𝑌 ) → 𝑐 Fne 𝐵 ) |
97 |
94 95 89 96
|
syl3anc |
⊢ ( ( 𝑋 = 𝑌 ∧ ( 𝑐 ⊆ 𝐵 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) ) → 𝑐 Fne 𝐵 ) |
98 |
|
fnetr |
⊢ ( ( 𝐴 Fne 𝑐 ∧ 𝑐 Fne 𝐵 ) → 𝐴 Fne 𝐵 ) |
99 |
84 97 98
|
syl2anc |
⊢ ( ( 𝑋 = 𝑌 ∧ ( 𝑐 ⊆ 𝐵 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) ) → 𝐴 Fne 𝐵 ) |
100 |
99
|
ex |
⊢ ( 𝑋 = 𝑌 → ( ( 𝑐 ⊆ 𝐵 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) → 𝐴 Fne 𝐵 ) ) |
101 |
100
|
exlimdv |
⊢ ( 𝑋 = 𝑌 → ( ∃ 𝑐 ( 𝑐 ⊆ 𝐵 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) → 𝐴 Fne 𝐵 ) ) |
102 |
83 101
|
impbid |
⊢ ( 𝑋 = 𝑌 → ( 𝐴 Fne 𝐵 ↔ ∃ 𝑐 ( 𝑐 ⊆ 𝐵 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) ) ) |