Metamath Proof Explorer


Theorem fnessref

Description: A cover is finer iff it has a subcover which is both finer and a refinement. (Contributed by Jeff Hankins, 18-Jan-2010) (Revised by Thierry Arnoux, 3-Feb-2020)

Ref Expression
Hypotheses fnessref.1 𝑋 = 𝐴
fnessref.2 𝑌 = 𝐵
Assertion fnessref ( 𝑋 = 𝑌 → ( 𝐴 Fne 𝐵 ↔ ∃ 𝑐 ( 𝑐𝐵 ∧ ( 𝐴 Fne 𝑐𝑐 Ref 𝐴 ) ) ) )

Proof

Step Hyp Ref Expression
1 fnessref.1 𝑋 = 𝐴
2 fnessref.2 𝑌 = 𝐵
3 fnerel Rel Fne
4 3 brrelex2i ( 𝐴 Fne 𝐵𝐵 ∈ V )
5 4 adantl ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) → 𝐵 ∈ V )
6 rabexg ( 𝐵 ∈ V → { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ∈ V )
7 5 6 syl ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) → { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ∈ V )
8 ssrab2 { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ⊆ 𝐵
9 8 a1i ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) → { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ⊆ 𝐵 )
10 1 eleq2i ( 𝑡𝑋𝑡 𝐴 )
11 eluni ( 𝑡 𝐴 ↔ ∃ 𝑧 ( 𝑡𝑧𝑧𝐴 ) )
12 10 11 bitri ( 𝑡𝑋 ↔ ∃ 𝑧 ( 𝑡𝑧𝑧𝐴 ) )
13 fnessex ( ( 𝐴 Fne 𝐵𝑧𝐴𝑡𝑧 ) → ∃ 𝑥𝐵 ( 𝑡𝑥𝑥𝑧 ) )
14 13 3expia ( ( 𝐴 Fne 𝐵𝑧𝐴 ) → ( 𝑡𝑧 → ∃ 𝑥𝐵 ( 𝑡𝑥𝑥𝑧 ) ) )
15 14 adantll ( ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) ∧ 𝑧𝐴 ) → ( 𝑡𝑧 → ∃ 𝑥𝐵 ( 𝑡𝑥𝑥𝑧 ) ) )
16 sseq2 ( 𝑦 = 𝑧 → ( 𝑥𝑦𝑥𝑧 ) )
17 16 rspcev ( ( 𝑧𝐴𝑥𝑧 ) → ∃ 𝑦𝐴 𝑥𝑦 )
18 17 ex ( 𝑧𝐴 → ( 𝑥𝑧 → ∃ 𝑦𝐴 𝑥𝑦 ) )
19 18 adantl ( ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) ∧ 𝑧𝐴 ) → ( 𝑥𝑧 → ∃ 𝑦𝐴 𝑥𝑦 ) )
20 19 anim2d ( ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) ∧ 𝑧𝐴 ) → ( ( 𝑡𝑥𝑥𝑧 ) → ( 𝑡𝑥 ∧ ∃ 𝑦𝐴 𝑥𝑦 ) ) )
21 20 reximdv ( ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) ∧ 𝑧𝐴 ) → ( ∃ 𝑥𝐵 ( 𝑡𝑥𝑥𝑧 ) → ∃ 𝑥𝐵 ( 𝑡𝑥 ∧ ∃ 𝑦𝐴 𝑥𝑦 ) ) )
22 15 21 syld ( ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) ∧ 𝑧𝐴 ) → ( 𝑡𝑧 → ∃ 𝑥𝐵 ( 𝑡𝑥 ∧ ∃ 𝑦𝐴 𝑥𝑦 ) ) )
23 22 ex ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) → ( 𝑧𝐴 → ( 𝑡𝑧 → ∃ 𝑥𝐵 ( 𝑡𝑥 ∧ ∃ 𝑦𝐴 𝑥𝑦 ) ) ) )
24 23 com23 ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) → ( 𝑡𝑧 → ( 𝑧𝐴 → ∃ 𝑥𝐵 ( 𝑡𝑥 ∧ ∃ 𝑦𝐴 𝑥𝑦 ) ) ) )
25 24 impd ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) → ( ( 𝑡𝑧𝑧𝐴 ) → ∃ 𝑥𝐵 ( 𝑡𝑥 ∧ ∃ 𝑦𝐴 𝑥𝑦 ) ) )
26 25 exlimdv ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) → ( ∃ 𝑧 ( 𝑡𝑧𝑧𝐴 ) → ∃ 𝑥𝐵 ( 𝑡𝑥 ∧ ∃ 𝑦𝐴 𝑥𝑦 ) ) )
27 12 26 syl5bi ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) → ( 𝑡𝑋 → ∃ 𝑥𝐵 ( 𝑡𝑥 ∧ ∃ 𝑦𝐴 𝑥𝑦 ) ) )
28 elunirab ( 𝑡 { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ↔ ∃ 𝑥𝐵 ( 𝑡𝑥 ∧ ∃ 𝑦𝐴 𝑥𝑦 ) )
29 27 28 syl6ibr ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) → ( 𝑡𝑋𝑡 { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ) )
30 29 ssrdv ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) → 𝑋 { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } )
31 8 unissi { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ⊆ 𝐵
32 simpl ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) → 𝑋 = 𝑌 )
33 32 2 eqtr2di ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) → 𝐵 = 𝑋 )
34 31 33 sseqtrid ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) → { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ⊆ 𝑋 )
35 30 34 eqssd ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) → 𝑋 = { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } )
36 fnessex ( ( 𝐴 Fne 𝐵𝑧𝐴𝑡𝑧 ) → ∃ 𝑤𝐵 ( 𝑡𝑤𝑤𝑧 ) )
37 36 3expb ( ( 𝐴 Fne 𝐵 ∧ ( 𝑧𝐴𝑡𝑧 ) ) → ∃ 𝑤𝐵 ( 𝑡𝑤𝑤𝑧 ) )
38 37 adantll ( ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) ∧ ( 𝑧𝐴𝑡𝑧 ) ) → ∃ 𝑤𝐵 ( 𝑡𝑤𝑤𝑧 ) )
39 simpl ( ( 𝑤𝐵 ∧ ( 𝑡𝑤𝑤𝑧 ) ) → 𝑤𝐵 )
40 39 a1i ( ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) ∧ ( 𝑧𝐴𝑡𝑧 ) ) → ( ( 𝑤𝐵 ∧ ( 𝑡𝑤𝑤𝑧 ) ) → 𝑤𝐵 ) )
41 sseq2 ( 𝑦 = 𝑧 → ( 𝑤𝑦𝑤𝑧 ) )
42 41 rspcev ( ( 𝑧𝐴𝑤𝑧 ) → ∃ 𝑦𝐴 𝑤𝑦 )
43 42 expcom ( 𝑤𝑧 → ( 𝑧𝐴 → ∃ 𝑦𝐴 𝑤𝑦 ) )
44 43 ad2antll ( ( 𝑤𝐵 ∧ ( 𝑡𝑤𝑤𝑧 ) ) → ( 𝑧𝐴 → ∃ 𝑦𝐴 𝑤𝑦 ) )
45 44 com12 ( 𝑧𝐴 → ( ( 𝑤𝐵 ∧ ( 𝑡𝑤𝑤𝑧 ) ) → ∃ 𝑦𝐴 𝑤𝑦 ) )
46 45 ad2antrl ( ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) ∧ ( 𝑧𝐴𝑡𝑧 ) ) → ( ( 𝑤𝐵 ∧ ( 𝑡𝑤𝑤𝑧 ) ) → ∃ 𝑦𝐴 𝑤𝑦 ) )
47 40 46 jcad ( ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) ∧ ( 𝑧𝐴𝑡𝑧 ) ) → ( ( 𝑤𝐵 ∧ ( 𝑡𝑤𝑤𝑧 ) ) → ( 𝑤𝐵 ∧ ∃ 𝑦𝐴 𝑤𝑦 ) ) )
48 sseq1 ( 𝑥 = 𝑤 → ( 𝑥𝑦𝑤𝑦 ) )
49 48 rexbidv ( 𝑥 = 𝑤 → ( ∃ 𝑦𝐴 𝑥𝑦 ↔ ∃ 𝑦𝐴 𝑤𝑦 ) )
50 49 elrab ( 𝑤 ∈ { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ↔ ( 𝑤𝐵 ∧ ∃ 𝑦𝐴 𝑤𝑦 ) )
51 47 50 syl6ibr ( ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) ∧ ( 𝑧𝐴𝑡𝑧 ) ) → ( ( 𝑤𝐵 ∧ ( 𝑡𝑤𝑤𝑧 ) ) → 𝑤 ∈ { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ) )
52 simpr ( ( 𝑤𝐵 ∧ ( 𝑡𝑤𝑤𝑧 ) ) → ( 𝑡𝑤𝑤𝑧 ) )
53 52 a1i ( ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) ∧ ( 𝑧𝐴𝑡𝑧 ) ) → ( ( 𝑤𝐵 ∧ ( 𝑡𝑤𝑤𝑧 ) ) → ( 𝑡𝑤𝑤𝑧 ) ) )
54 51 53 jcad ( ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) ∧ ( 𝑧𝐴𝑡𝑧 ) ) → ( ( 𝑤𝐵 ∧ ( 𝑡𝑤𝑤𝑧 ) ) → ( 𝑤 ∈ { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ∧ ( 𝑡𝑤𝑤𝑧 ) ) ) )
55 54 reximdv2 ( ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) ∧ ( 𝑧𝐴𝑡𝑧 ) ) → ( ∃ 𝑤𝐵 ( 𝑡𝑤𝑤𝑧 ) → ∃ 𝑤 ∈ { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ( 𝑡𝑤𝑤𝑧 ) ) )
56 38 55 mpd ( ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) ∧ ( 𝑧𝐴𝑡𝑧 ) ) → ∃ 𝑤 ∈ { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ( 𝑡𝑤𝑤𝑧 ) )
57 56 ralrimivva ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) → ∀ 𝑧𝐴𝑡𝑧𝑤 ∈ { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ( 𝑡𝑤𝑤𝑧 ) )
58 eqid { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } = { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 }
59 1 58 isfne2 ( { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ∈ V → ( 𝐴 Fne { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ↔ ( 𝑋 = { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ∧ ∀ 𝑧𝐴𝑡𝑧𝑤 ∈ { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ( 𝑡𝑤𝑤𝑧 ) ) ) )
60 5 6 59 3syl ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) → ( 𝐴 Fne { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ↔ ( 𝑋 = { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ∧ ∀ 𝑧𝐴𝑡𝑧𝑤 ∈ { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ( 𝑡𝑤𝑤𝑧 ) ) ) )
61 35 57 60 mpbir2and ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) → 𝐴 Fne { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } )
62 sseq1 ( 𝑥 = 𝑧 → ( 𝑥𝑦𝑧𝑦 ) )
63 62 rexbidv ( 𝑥 = 𝑧 → ( ∃ 𝑦𝐴 𝑥𝑦 ↔ ∃ 𝑦𝐴 𝑧𝑦 ) )
64 63 elrab ( 𝑧 ∈ { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ↔ ( 𝑧𝐵 ∧ ∃ 𝑦𝐴 𝑧𝑦 ) )
65 sseq2 ( 𝑦 = 𝑤 → ( 𝑧𝑦𝑧𝑤 ) )
66 65 cbvrexvw ( ∃ 𝑦𝐴 𝑧𝑦 ↔ ∃ 𝑤𝐴 𝑧𝑤 )
67 66 biimpi ( ∃ 𝑦𝐴 𝑧𝑦 → ∃ 𝑤𝐴 𝑧𝑤 )
68 67 adantl ( ( 𝑧𝐵 ∧ ∃ 𝑦𝐴 𝑧𝑦 ) → ∃ 𝑤𝐴 𝑧𝑤 )
69 68 a1i ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) → ( ( 𝑧𝐵 ∧ ∃ 𝑦𝐴 𝑧𝑦 ) → ∃ 𝑤𝐴 𝑧𝑤 ) )
70 64 69 syl5bi ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) → ( 𝑧 ∈ { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } → ∃ 𝑤𝐴 𝑧𝑤 ) )
71 70 ralrimiv ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) → ∀ 𝑧 ∈ { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ∃ 𝑤𝐴 𝑧𝑤 )
72 58 1 isref ( { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ∈ V → ( { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } Ref 𝐴 ↔ ( 𝑋 = { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ∧ ∀ 𝑧 ∈ { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ∃ 𝑤𝐴 𝑧𝑤 ) ) )
73 5 6 72 3syl ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) → ( { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } Ref 𝐴 ↔ ( 𝑋 = { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ∧ ∀ 𝑧 ∈ { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ∃ 𝑤𝐴 𝑧𝑤 ) ) )
74 35 71 73 mpbir2and ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) → { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } Ref 𝐴 )
75 9 61 74 jca32 ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) → ( { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ⊆ 𝐵 ∧ ( 𝐴 Fne { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ∧ { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } Ref 𝐴 ) ) )
76 sseq1 ( 𝑐 = { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } → ( 𝑐𝐵 ↔ { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ⊆ 𝐵 ) )
77 breq2 ( 𝑐 = { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } → ( 𝐴 Fne 𝑐𝐴 Fne { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ) )
78 breq1 ( 𝑐 = { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } → ( 𝑐 Ref 𝐴 ↔ { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } Ref 𝐴 ) )
79 77 78 anbi12d ( 𝑐 = { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } → ( ( 𝐴 Fne 𝑐𝑐 Ref 𝐴 ) ↔ ( 𝐴 Fne { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ∧ { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } Ref 𝐴 ) ) )
80 76 79 anbi12d ( 𝑐 = { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } → ( ( 𝑐𝐵 ∧ ( 𝐴 Fne 𝑐𝑐 Ref 𝐴 ) ) ↔ ( { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ⊆ 𝐵 ∧ ( 𝐴 Fne { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ∧ { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } Ref 𝐴 ) ) ) )
81 80 spcegv ( { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ∈ V → ( ( { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ⊆ 𝐵 ∧ ( 𝐴 Fne { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } ∧ { 𝑥𝐵 ∣ ∃ 𝑦𝐴 𝑥𝑦 } Ref 𝐴 ) ) → ∃ 𝑐 ( 𝑐𝐵 ∧ ( 𝐴 Fne 𝑐𝑐 Ref 𝐴 ) ) ) )
82 7 75 81 sylc ( ( 𝑋 = 𝑌𝐴 Fne 𝐵 ) → ∃ 𝑐 ( 𝑐𝐵 ∧ ( 𝐴 Fne 𝑐𝑐 Ref 𝐴 ) ) )
83 82 ex ( 𝑋 = 𝑌 → ( 𝐴 Fne 𝐵 → ∃ 𝑐 ( 𝑐𝐵 ∧ ( 𝐴 Fne 𝑐𝑐 Ref 𝐴 ) ) ) )
84 simprrl ( ( 𝑋 = 𝑌 ∧ ( 𝑐𝐵 ∧ ( 𝐴 Fne 𝑐𝑐 Ref 𝐴 ) ) ) → 𝐴 Fne 𝑐 )
85 eqid 𝑐 = 𝑐
86 1 85 fnebas ( 𝐴 Fne 𝑐𝑋 = 𝑐 )
87 84 86 syl ( ( 𝑋 = 𝑌 ∧ ( 𝑐𝐵 ∧ ( 𝐴 Fne 𝑐𝑐 Ref 𝐴 ) ) ) → 𝑋 = 𝑐 )
88 simpl ( ( 𝑋 = 𝑌 ∧ ( 𝑐𝐵 ∧ ( 𝐴 Fne 𝑐𝑐 Ref 𝐴 ) ) ) → 𝑋 = 𝑌 )
89 87 88 eqtr3d ( ( 𝑋 = 𝑌 ∧ ( 𝑐𝐵 ∧ ( 𝐴 Fne 𝑐𝑐 Ref 𝐴 ) ) ) → 𝑐 = 𝑌 )
90 89 2 eqtrdi ( ( 𝑋 = 𝑌 ∧ ( 𝑐𝐵 ∧ ( 𝐴 Fne 𝑐𝑐 Ref 𝐴 ) ) ) → 𝑐 = 𝐵 )
91 vuniex 𝑐 ∈ V
92 90 91 eqeltrrdi ( ( 𝑋 = 𝑌 ∧ ( 𝑐𝐵 ∧ ( 𝐴 Fne 𝑐𝑐 Ref 𝐴 ) ) ) → 𝐵 ∈ V )
93 uniexb ( 𝐵 ∈ V ↔ 𝐵 ∈ V )
94 92 93 sylibr ( ( 𝑋 = 𝑌 ∧ ( 𝑐𝐵 ∧ ( 𝐴 Fne 𝑐𝑐 Ref 𝐴 ) ) ) → 𝐵 ∈ V )
95 simprl ( ( 𝑋 = 𝑌 ∧ ( 𝑐𝐵 ∧ ( 𝐴 Fne 𝑐𝑐 Ref 𝐴 ) ) ) → 𝑐𝐵 )
96 85 2 fness ( ( 𝐵 ∈ V ∧ 𝑐𝐵 𝑐 = 𝑌 ) → 𝑐 Fne 𝐵 )
97 94 95 89 96 syl3anc ( ( 𝑋 = 𝑌 ∧ ( 𝑐𝐵 ∧ ( 𝐴 Fne 𝑐𝑐 Ref 𝐴 ) ) ) → 𝑐 Fne 𝐵 )
98 fnetr ( ( 𝐴 Fne 𝑐𝑐 Fne 𝐵 ) → 𝐴 Fne 𝐵 )
99 84 97 98 syl2anc ( ( 𝑋 = 𝑌 ∧ ( 𝑐𝐵 ∧ ( 𝐴 Fne 𝑐𝑐 Ref 𝐴 ) ) ) → 𝐴 Fne 𝐵 )
100 99 ex ( 𝑋 = 𝑌 → ( ( 𝑐𝐵 ∧ ( 𝐴 Fne 𝑐𝑐 Ref 𝐴 ) ) → 𝐴 Fne 𝐵 ) )
101 100 exlimdv ( 𝑋 = 𝑌 → ( ∃ 𝑐 ( 𝑐𝐵 ∧ ( 𝐴 Fne 𝑐𝑐 Ref 𝐴 ) ) → 𝐴 Fne 𝐵 ) )
102 83 101 impbid ( 𝑋 = 𝑌 → ( 𝐴 Fne 𝐵 ↔ ∃ 𝑐 ( 𝑐𝐵 ∧ ( 𝐴 Fne 𝑐𝑐 Ref 𝐴 ) ) ) )