Step |
Hyp |
Ref |
Expression |
1 |
|
fnessref.1 |
|
2 |
|
fnessref.2 |
|
3 |
|
fnerel |
|
4 |
3
|
brrelex2i |
|
5 |
4
|
adantl |
|
6 |
|
rabexg |
|
7 |
5 6
|
syl |
|
8 |
|
ssrab2 |
|
9 |
8
|
a1i |
|
10 |
1
|
eleq2i |
|
11 |
|
eluni |
|
12 |
10 11
|
bitri |
|
13 |
|
fnessex |
|
14 |
13
|
3expia |
|
15 |
14
|
adantll |
|
16 |
|
sseq2 |
|
17 |
16
|
rspcev |
|
18 |
17
|
ex |
|
19 |
18
|
adantl |
|
20 |
19
|
anim2d |
|
21 |
20
|
reximdv |
|
22 |
15 21
|
syld |
|
23 |
22
|
ex |
|
24 |
23
|
com23 |
|
25 |
24
|
impd |
|
26 |
25
|
exlimdv |
|
27 |
12 26
|
syl5bi |
|
28 |
|
elunirab |
|
29 |
27 28
|
syl6ibr |
|
30 |
29
|
ssrdv |
|
31 |
8
|
unissi |
|
32 |
|
simpl |
|
33 |
32 2
|
eqtr2di |
|
34 |
31 33
|
sseqtrid |
|
35 |
30 34
|
eqssd |
|
36 |
|
fnessex |
|
37 |
36
|
3expb |
|
38 |
37
|
adantll |
|
39 |
|
simpl |
|
40 |
39
|
a1i |
|
41 |
|
sseq2 |
|
42 |
41
|
rspcev |
|
43 |
42
|
expcom |
|
44 |
43
|
ad2antll |
|
45 |
44
|
com12 |
|
46 |
45
|
ad2antrl |
|
47 |
40 46
|
jcad |
|
48 |
|
sseq1 |
|
49 |
48
|
rexbidv |
|
50 |
49
|
elrab |
|
51 |
47 50
|
syl6ibr |
|
52 |
|
simpr |
|
53 |
52
|
a1i |
|
54 |
51 53
|
jcad |
|
55 |
54
|
reximdv2 |
|
56 |
38 55
|
mpd |
|
57 |
56
|
ralrimivva |
|
58 |
|
eqid |
|
59 |
1 58
|
isfne2 |
|
60 |
5 6 59
|
3syl |
|
61 |
35 57 60
|
mpbir2and |
|
62 |
|
sseq1 |
|
63 |
62
|
rexbidv |
|
64 |
63
|
elrab |
|
65 |
|
sseq2 |
|
66 |
65
|
cbvrexvw |
|
67 |
66
|
biimpi |
|
68 |
67
|
adantl |
|
69 |
68
|
a1i |
|
70 |
64 69
|
syl5bi |
|
71 |
70
|
ralrimiv |
|
72 |
58 1
|
isref |
|
73 |
5 6 72
|
3syl |
|
74 |
35 71 73
|
mpbir2and |
|
75 |
9 61 74
|
jca32 |
|
76 |
|
sseq1 |
|
77 |
|
breq2 |
|
78 |
|
breq1 |
|
79 |
77 78
|
anbi12d |
|
80 |
76 79
|
anbi12d |
|
81 |
80
|
spcegv |
|
82 |
7 75 81
|
sylc |
|
83 |
82
|
ex |
|
84 |
|
simprrl |
|
85 |
|
eqid |
|
86 |
1 85
|
fnebas |
|
87 |
84 86
|
syl |
|
88 |
|
simpl |
|
89 |
87 88
|
eqtr3d |
|
90 |
89 2
|
eqtrdi |
|
91 |
|
vuniex |
|
92 |
90 91
|
eqeltrrdi |
|
93 |
|
uniexb |
|
94 |
92 93
|
sylibr |
|
95 |
|
simprl |
|
96 |
85 2
|
fness |
|
97 |
94 95 89 96
|
syl3anc |
|
98 |
|
fnetr |
|
99 |
84 97 98
|
syl2anc |
|
100 |
99
|
ex |
|
101 |
100
|
exlimdv |
|
102 |
83 101
|
impbid |
|