| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnessref.1 |
|
| 2 |
|
fnessref.2 |
|
| 3 |
|
fnerel |
|
| 4 |
3
|
brrelex2i |
|
| 5 |
4
|
adantl |
|
| 6 |
|
rabexg |
|
| 7 |
5 6
|
syl |
|
| 8 |
|
ssrab2 |
|
| 9 |
8
|
a1i |
|
| 10 |
1
|
eleq2i |
|
| 11 |
|
eluni |
|
| 12 |
10 11
|
bitri |
|
| 13 |
|
fnessex |
|
| 14 |
13
|
3expia |
|
| 15 |
14
|
adantll |
|
| 16 |
|
sseq2 |
|
| 17 |
16
|
rspcev |
|
| 18 |
17
|
ex |
|
| 19 |
18
|
adantl |
|
| 20 |
19
|
anim2d |
|
| 21 |
20
|
reximdv |
|
| 22 |
15 21
|
syld |
|
| 23 |
22
|
ex |
|
| 24 |
23
|
com23 |
|
| 25 |
24
|
impd |
|
| 26 |
25
|
exlimdv |
|
| 27 |
12 26
|
biimtrid |
|
| 28 |
|
elunirab |
|
| 29 |
27 28
|
imbitrrdi |
|
| 30 |
29
|
ssrdv |
|
| 31 |
8
|
unissi |
|
| 32 |
|
simpl |
|
| 33 |
32 2
|
eqtr2di |
|
| 34 |
31 33
|
sseqtrid |
|
| 35 |
30 34
|
eqssd |
|
| 36 |
|
fnessex |
|
| 37 |
36
|
3expb |
|
| 38 |
37
|
adantll |
|
| 39 |
|
simpl |
|
| 40 |
39
|
a1i |
|
| 41 |
|
sseq2 |
|
| 42 |
41
|
rspcev |
|
| 43 |
42
|
expcom |
|
| 44 |
43
|
ad2antll |
|
| 45 |
44
|
com12 |
|
| 46 |
45
|
ad2antrl |
|
| 47 |
40 46
|
jcad |
|
| 48 |
|
sseq1 |
|
| 49 |
48
|
rexbidv |
|
| 50 |
49
|
elrab |
|
| 51 |
47 50
|
imbitrrdi |
|
| 52 |
|
simpr |
|
| 53 |
52
|
a1i |
|
| 54 |
51 53
|
jcad |
|
| 55 |
54
|
reximdv2 |
|
| 56 |
38 55
|
mpd |
|
| 57 |
56
|
ralrimivva |
|
| 58 |
|
eqid |
|
| 59 |
1 58
|
isfne2 |
|
| 60 |
5 6 59
|
3syl |
|
| 61 |
35 57 60
|
mpbir2and |
|
| 62 |
|
sseq1 |
|
| 63 |
62
|
rexbidv |
|
| 64 |
63
|
elrab |
|
| 65 |
|
sseq2 |
|
| 66 |
65
|
cbvrexvw |
|
| 67 |
66
|
biimpi |
|
| 68 |
67
|
adantl |
|
| 69 |
68
|
a1i |
|
| 70 |
64 69
|
biimtrid |
|
| 71 |
70
|
ralrimiv |
|
| 72 |
58 1
|
isref |
|
| 73 |
5 6 72
|
3syl |
|
| 74 |
35 71 73
|
mpbir2and |
|
| 75 |
9 61 74
|
jca32 |
|
| 76 |
|
sseq1 |
|
| 77 |
|
breq2 |
|
| 78 |
|
breq1 |
|
| 79 |
77 78
|
anbi12d |
|
| 80 |
76 79
|
anbi12d |
|
| 81 |
80
|
spcegv |
|
| 82 |
7 75 81
|
sylc |
|
| 83 |
82
|
ex |
|
| 84 |
|
simprrl |
|
| 85 |
|
eqid |
|
| 86 |
1 85
|
fnebas |
|
| 87 |
84 86
|
syl |
|
| 88 |
|
simpl |
|
| 89 |
87 88
|
eqtr3d |
|
| 90 |
89 2
|
eqtrdi |
|
| 91 |
|
vuniex |
|
| 92 |
90 91
|
eqeltrrdi |
|
| 93 |
|
uniexb |
|
| 94 |
92 93
|
sylibr |
|
| 95 |
|
simprl |
|
| 96 |
85 2
|
fness |
|
| 97 |
94 95 89 96
|
syl3anc |
|
| 98 |
|
fnetr |
|
| 99 |
84 97 98
|
syl2anc |
|
| 100 |
99
|
ex |
|
| 101 |
100
|
exlimdv |
|
| 102 |
83 101
|
impbid |
|