Step |
Hyp |
Ref |
Expression |
1 |
|
refssfne.1 |
|
2 |
|
refssfne.2 |
|
3 |
|
refrel |
|
4 |
3
|
brrelex2i |
|
5 |
4
|
adantl |
|
6 |
3
|
brrelex1i |
|
7 |
6
|
adantl |
|
8 |
|
unexg |
|
9 |
5 7 8
|
syl2anc |
|
10 |
|
ssun2 |
|
11 |
10
|
a1i |
|
12 |
|
ssun1 |
|
13 |
12
|
a1i |
|
14 |
|
eqimss2 |
|
15 |
14
|
adantr |
|
16 |
|
ssequn2 |
|
17 |
15 16
|
sylib |
|
18 |
17
|
eqcomd |
|
19 |
1 2
|
uneq12i |
|
20 |
|
uniun |
|
21 |
19 20
|
eqtr4i |
|
22 |
1 21
|
fness |
|
23 |
9 13 18 22
|
syl3anc |
|
24 |
|
elun |
|
25 |
|
ssid |
|
26 |
|
sseq2 |
|
27 |
26
|
rspcev |
|
28 |
25 27
|
mpan2 |
|
29 |
28
|
a1i |
|
30 |
|
refssex |
|
31 |
30
|
ex |
|
32 |
31
|
adantl |
|
33 |
29 32
|
jaod |
|
34 |
24 33
|
syl5bi |
|
35 |
34
|
ralrimiv |
|
36 |
21 1
|
isref |
|
37 |
9 36
|
syl |
|
38 |
18 35 37
|
mpbir2and |
|
39 |
11 23 38
|
jca32 |
|
40 |
|
sseq2 |
|
41 |
|
breq2 |
|
42 |
|
breq1 |
|
43 |
41 42
|
anbi12d |
|
44 |
40 43
|
anbi12d |
|
45 |
44
|
spcegv |
|
46 |
9 39 45
|
sylc |
|
47 |
46
|
ex |
|
48 |
|
vex |
|
49 |
48
|
ssex |
|
50 |
49
|
ad2antrl |
|
51 |
|
simprl |
|
52 |
|
simpl |
|
53 |
|
eqid |
|
54 |
53 1
|
refbas |
|
55 |
54
|
adantl |
|
56 |
55
|
ad2antll |
|
57 |
52 56
|
eqtr3d |
|
58 |
2 53
|
ssref |
|
59 |
50 51 57 58
|
syl3anc |
|
60 |
|
simprrr |
|
61 |
|
reftr |
|
62 |
59 60 61
|
syl2anc |
|
63 |
62
|
ex |
|
64 |
63
|
exlimdv |
|
65 |
47 64
|
impbid |
|