Metamath Proof Explorer


Theorem refssfne

Description: A cover is a refinement iff it is a subcover of something which is both finer and a refinement. (Contributed by Jeff Hankins, 18-Jan-2010) (Revised by Thierry Arnoux, 3-Feb-2020)

Ref Expression
Hypotheses refssfne.1 X = A
refssfne.2 Y = B
Assertion refssfne X = Y B Ref A c B c A Fne c c Ref A

Proof

Step Hyp Ref Expression
1 refssfne.1 X = A
2 refssfne.2 Y = B
3 refrel Rel Ref
4 3 brrelex2i B Ref A A V
5 4 adantl X = Y B Ref A A V
6 3 brrelex1i B Ref A B V
7 6 adantl X = Y B Ref A B V
8 unexg A V B V A B V
9 5 7 8 syl2anc X = Y B Ref A A B V
10 ssun2 B A B
11 10 a1i X = Y B Ref A B A B
12 ssun1 A A B
13 12 a1i X = Y B Ref A A A B
14 eqimss2 X = Y Y X
15 14 adantr X = Y B Ref A Y X
16 ssequn2 Y X X Y = X
17 15 16 sylib X = Y B Ref A X Y = X
18 17 eqcomd X = Y B Ref A X = X Y
19 1 2 uneq12i X Y = A B
20 uniun A B = A B
21 19 20 eqtr4i X Y = A B
22 1 21 fness A B V A A B X = X Y A Fne A B
23 9 13 18 22 syl3anc X = Y B Ref A A Fne A B
24 elun x A B x A x B
25 ssid x x
26 sseq2 y = x x y x x
27 26 rspcev x A x x y A x y
28 25 27 mpan2 x A y A x y
29 28 a1i X = Y B Ref A x A y A x y
30 refssex B Ref A x B y A x y
31 30 ex B Ref A x B y A x y
32 31 adantl X = Y B Ref A x B y A x y
33 29 32 jaod X = Y B Ref A x A x B y A x y
34 24 33 syl5bi X = Y B Ref A x A B y A x y
35 34 ralrimiv X = Y B Ref A x A B y A x y
36 21 1 isref A B V A B Ref A X = X Y x A B y A x y
37 9 36 syl X = Y B Ref A A B Ref A X = X Y x A B y A x y
38 18 35 37 mpbir2and X = Y B Ref A A B Ref A
39 11 23 38 jca32 X = Y B Ref A B A B A Fne A B A B Ref A
40 sseq2 c = A B B c B A B
41 breq2 c = A B A Fne c A Fne A B
42 breq1 c = A B c Ref A A B Ref A
43 41 42 anbi12d c = A B A Fne c c Ref A A Fne A B A B Ref A
44 40 43 anbi12d c = A B B c A Fne c c Ref A B A B A Fne A B A B Ref A
45 44 spcegv A B V B A B A Fne A B A B Ref A c B c A Fne c c Ref A
46 9 39 45 sylc X = Y B Ref A c B c A Fne c c Ref A
47 46 ex X = Y B Ref A c B c A Fne c c Ref A
48 vex c V
49 48 ssex B c B V
50 49 ad2antrl X = Y B c A Fne c c Ref A B V
51 simprl X = Y B c A Fne c c Ref A B c
52 simpl X = Y B c A Fne c c Ref A X = Y
53 eqid c = c
54 53 1 refbas c Ref A X = c
55 54 adantl A Fne c c Ref A X = c
56 55 ad2antll X = Y B c A Fne c c Ref A X = c
57 52 56 eqtr3d X = Y B c A Fne c c Ref A Y = c
58 2 53 ssref B V B c Y = c B Ref c
59 50 51 57 58 syl3anc X = Y B c A Fne c c Ref A B Ref c
60 simprrr X = Y B c A Fne c c Ref A c Ref A
61 reftr B Ref c c Ref A B Ref A
62 59 60 61 syl2anc X = Y B c A Fne c c Ref A B Ref A
63 62 ex X = Y B c A Fne c c Ref A B Ref A
64 63 exlimdv X = Y c B c A Fne c c Ref A B Ref A
65 47 64 impbid X = Y B Ref A c B c A Fne c c Ref A