| Step |
Hyp |
Ref |
Expression |
| 1 |
|
refssfne.1 |
⊢ 𝑋 = ∪ 𝐴 |
| 2 |
|
refssfne.2 |
⊢ 𝑌 = ∪ 𝐵 |
| 3 |
|
refrel |
⊢ Rel Ref |
| 4 |
3
|
brrelex2i |
⊢ ( 𝐵 Ref 𝐴 → 𝐴 ∈ V ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐵 Ref 𝐴 ) → 𝐴 ∈ V ) |
| 6 |
3
|
brrelex1i |
⊢ ( 𝐵 Ref 𝐴 → 𝐵 ∈ V ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐵 Ref 𝐴 ) → 𝐵 ∈ V ) |
| 8 |
|
unexg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
| 9 |
5 7 8
|
syl2anc |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐵 Ref 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
| 10 |
|
ssun2 |
⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 11 |
10
|
a1i |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐵 Ref 𝐴 ) → 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ) |
| 12 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 13 |
12
|
a1i |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐵 Ref 𝐴 ) → 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) ) |
| 14 |
|
eqimss2 |
⊢ ( 𝑋 = 𝑌 → 𝑌 ⊆ 𝑋 ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐵 Ref 𝐴 ) → 𝑌 ⊆ 𝑋 ) |
| 16 |
|
ssequn2 |
⊢ ( 𝑌 ⊆ 𝑋 ↔ ( 𝑋 ∪ 𝑌 ) = 𝑋 ) |
| 17 |
15 16
|
sylib |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐵 Ref 𝐴 ) → ( 𝑋 ∪ 𝑌 ) = 𝑋 ) |
| 18 |
17
|
eqcomd |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐵 Ref 𝐴 ) → 𝑋 = ( 𝑋 ∪ 𝑌 ) ) |
| 19 |
1 2
|
uneq12i |
⊢ ( 𝑋 ∪ 𝑌 ) = ( ∪ 𝐴 ∪ ∪ 𝐵 ) |
| 20 |
|
uniun |
⊢ ∪ ( 𝐴 ∪ 𝐵 ) = ( ∪ 𝐴 ∪ ∪ 𝐵 ) |
| 21 |
19 20
|
eqtr4i |
⊢ ( 𝑋 ∪ 𝑌 ) = ∪ ( 𝐴 ∪ 𝐵 ) |
| 22 |
1 21
|
fness |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ∈ V ∧ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) ∧ 𝑋 = ( 𝑋 ∪ 𝑌 ) ) → 𝐴 Fne ( 𝐴 ∪ 𝐵 ) ) |
| 23 |
9 13 18 22
|
syl3anc |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐵 Ref 𝐴 ) → 𝐴 Fne ( 𝐴 ∪ 𝐵 ) ) |
| 24 |
|
elun |
⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) |
| 25 |
|
ssid |
⊢ 𝑥 ⊆ 𝑥 |
| 26 |
|
sseq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝑥 ) ) |
| 27 |
26
|
rspcev |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑥 ) → ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) |
| 28 |
25 27
|
mpan2 |
⊢ ( 𝑥 ∈ 𝐴 → ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) |
| 29 |
28
|
a1i |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐵 Ref 𝐴 ) → ( 𝑥 ∈ 𝐴 → ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) ) |
| 30 |
|
refssex |
⊢ ( ( 𝐵 Ref 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) |
| 31 |
30
|
ex |
⊢ ( 𝐵 Ref 𝐴 → ( 𝑥 ∈ 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) ) |
| 32 |
31
|
adantl |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐵 Ref 𝐴 ) → ( 𝑥 ∈ 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) ) |
| 33 |
29 32
|
jaod |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐵 Ref 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) ) |
| 34 |
24 33
|
biimtrid |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐵 Ref 𝐴 ) → ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) → ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) ) |
| 35 |
34
|
ralrimiv |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐵 Ref 𝐴 ) → ∀ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) |
| 36 |
21 1
|
isref |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ V → ( ( 𝐴 ∪ 𝐵 ) Ref 𝐴 ↔ ( 𝑋 = ( 𝑋 ∪ 𝑌 ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) ) ) |
| 37 |
9 36
|
syl |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐵 Ref 𝐴 ) → ( ( 𝐴 ∪ 𝐵 ) Ref 𝐴 ↔ ( 𝑋 = ( 𝑋 ∪ 𝑌 ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) ) ) |
| 38 |
18 35 37
|
mpbir2and |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐵 Ref 𝐴 ) → ( 𝐴 ∪ 𝐵 ) Ref 𝐴 ) |
| 39 |
11 23 38
|
jca32 |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐵 Ref 𝐴 ) → ( 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 Fne ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) Ref 𝐴 ) ) ) |
| 40 |
|
sseq2 |
⊢ ( 𝑐 = ( 𝐴 ∪ 𝐵 ) → ( 𝐵 ⊆ 𝑐 ↔ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ) ) |
| 41 |
|
breq2 |
⊢ ( 𝑐 = ( 𝐴 ∪ 𝐵 ) → ( 𝐴 Fne 𝑐 ↔ 𝐴 Fne ( 𝐴 ∪ 𝐵 ) ) ) |
| 42 |
|
breq1 |
⊢ ( 𝑐 = ( 𝐴 ∪ 𝐵 ) → ( 𝑐 Ref 𝐴 ↔ ( 𝐴 ∪ 𝐵 ) Ref 𝐴 ) ) |
| 43 |
41 42
|
anbi12d |
⊢ ( 𝑐 = ( 𝐴 ∪ 𝐵 ) → ( ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ↔ ( 𝐴 Fne ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) Ref 𝐴 ) ) ) |
| 44 |
40 43
|
anbi12d |
⊢ ( 𝑐 = ( 𝐴 ∪ 𝐵 ) → ( ( 𝐵 ⊆ 𝑐 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) ↔ ( 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 Fne ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) Ref 𝐴 ) ) ) ) |
| 45 |
44
|
spcegv |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ V → ( ( 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 Fne ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) Ref 𝐴 ) ) → ∃ 𝑐 ( 𝐵 ⊆ 𝑐 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) ) ) |
| 46 |
9 39 45
|
sylc |
⊢ ( ( 𝑋 = 𝑌 ∧ 𝐵 Ref 𝐴 ) → ∃ 𝑐 ( 𝐵 ⊆ 𝑐 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) ) |
| 47 |
46
|
ex |
⊢ ( 𝑋 = 𝑌 → ( 𝐵 Ref 𝐴 → ∃ 𝑐 ( 𝐵 ⊆ 𝑐 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) ) ) |
| 48 |
|
vex |
⊢ 𝑐 ∈ V |
| 49 |
48
|
ssex |
⊢ ( 𝐵 ⊆ 𝑐 → 𝐵 ∈ V ) |
| 50 |
49
|
ad2antrl |
⊢ ( ( 𝑋 = 𝑌 ∧ ( 𝐵 ⊆ 𝑐 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) ) → 𝐵 ∈ V ) |
| 51 |
|
simprl |
⊢ ( ( 𝑋 = 𝑌 ∧ ( 𝐵 ⊆ 𝑐 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) ) → 𝐵 ⊆ 𝑐 ) |
| 52 |
|
simpl |
⊢ ( ( 𝑋 = 𝑌 ∧ ( 𝐵 ⊆ 𝑐 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) ) → 𝑋 = 𝑌 ) |
| 53 |
|
eqid |
⊢ ∪ 𝑐 = ∪ 𝑐 |
| 54 |
53 1
|
refbas |
⊢ ( 𝑐 Ref 𝐴 → 𝑋 = ∪ 𝑐 ) |
| 55 |
54
|
adantl |
⊢ ( ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) → 𝑋 = ∪ 𝑐 ) |
| 56 |
55
|
ad2antll |
⊢ ( ( 𝑋 = 𝑌 ∧ ( 𝐵 ⊆ 𝑐 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) ) → 𝑋 = ∪ 𝑐 ) |
| 57 |
52 56
|
eqtr3d |
⊢ ( ( 𝑋 = 𝑌 ∧ ( 𝐵 ⊆ 𝑐 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) ) → 𝑌 = ∪ 𝑐 ) |
| 58 |
2 53
|
ssref |
⊢ ( ( 𝐵 ∈ V ∧ 𝐵 ⊆ 𝑐 ∧ 𝑌 = ∪ 𝑐 ) → 𝐵 Ref 𝑐 ) |
| 59 |
50 51 57 58
|
syl3anc |
⊢ ( ( 𝑋 = 𝑌 ∧ ( 𝐵 ⊆ 𝑐 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) ) → 𝐵 Ref 𝑐 ) |
| 60 |
|
simprrr |
⊢ ( ( 𝑋 = 𝑌 ∧ ( 𝐵 ⊆ 𝑐 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) ) → 𝑐 Ref 𝐴 ) |
| 61 |
|
reftr |
⊢ ( ( 𝐵 Ref 𝑐 ∧ 𝑐 Ref 𝐴 ) → 𝐵 Ref 𝐴 ) |
| 62 |
59 60 61
|
syl2anc |
⊢ ( ( 𝑋 = 𝑌 ∧ ( 𝐵 ⊆ 𝑐 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) ) → 𝐵 Ref 𝐴 ) |
| 63 |
62
|
ex |
⊢ ( 𝑋 = 𝑌 → ( ( 𝐵 ⊆ 𝑐 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) → 𝐵 Ref 𝐴 ) ) |
| 64 |
63
|
exlimdv |
⊢ ( 𝑋 = 𝑌 → ( ∃ 𝑐 ( 𝐵 ⊆ 𝑐 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) → 𝐵 Ref 𝐴 ) ) |
| 65 |
47 64
|
impbid |
⊢ ( 𝑋 = 𝑌 → ( 𝐵 Ref 𝐴 ↔ ∃ 𝑐 ( 𝐵 ⊆ 𝑐 ∧ ( 𝐴 Fne 𝑐 ∧ 𝑐 Ref 𝐴 ) ) ) ) |