Metamath Proof Explorer


Theorem fness

Description: A cover is finer than its subcovers. (Contributed by Jeff Hankins, 11-Oct-2009)

Ref Expression
Hypotheses fness.1 𝑋 = 𝐴
fness.2 𝑌 = 𝐵
Assertion fness ( ( 𝐵𝐶𝐴𝐵𝑋 = 𝑌 ) → 𝐴 Fne 𝐵 )

Proof

Step Hyp Ref Expression
1 fness.1 𝑋 = 𝐴
2 fness.2 𝑌 = 𝐵
3 simp3 ( ( 𝐵𝐶𝐴𝐵𝑋 = 𝑌 ) → 𝑋 = 𝑌 )
4 ssel2 ( ( 𝐴𝐵𝑥𝐴 ) → 𝑥𝐵 )
5 4 3adant3 ( ( 𝐴𝐵𝑥𝐴𝑦𝑥 ) → 𝑥𝐵 )
6 simp3 ( ( 𝐴𝐵𝑥𝐴𝑦𝑥 ) → 𝑦𝑥 )
7 ssid 𝑥𝑥
8 6 7 jctir ( ( 𝐴𝐵𝑥𝐴𝑦𝑥 ) → ( 𝑦𝑥𝑥𝑥 ) )
9 elequ2 ( 𝑧 = 𝑥 → ( 𝑦𝑧𝑦𝑥 ) )
10 sseq1 ( 𝑧 = 𝑥 → ( 𝑧𝑥𝑥𝑥 ) )
11 9 10 anbi12d ( 𝑧 = 𝑥 → ( ( 𝑦𝑧𝑧𝑥 ) ↔ ( 𝑦𝑥𝑥𝑥 ) ) )
12 11 rspcev ( ( 𝑥𝐵 ∧ ( 𝑦𝑥𝑥𝑥 ) ) → ∃ 𝑧𝐵 ( 𝑦𝑧𝑧𝑥 ) )
13 5 8 12 syl2anc ( ( 𝐴𝐵𝑥𝐴𝑦𝑥 ) → ∃ 𝑧𝐵 ( 𝑦𝑧𝑧𝑥 ) )
14 13 3expib ( 𝐴𝐵 → ( ( 𝑥𝐴𝑦𝑥 ) → ∃ 𝑧𝐵 ( 𝑦𝑧𝑧𝑥 ) ) )
15 14 ralrimivv ( 𝐴𝐵 → ∀ 𝑥𝐴𝑦𝑥𝑧𝐵 ( 𝑦𝑧𝑧𝑥 ) )
16 15 3ad2ant2 ( ( 𝐵𝐶𝐴𝐵𝑋 = 𝑌 ) → ∀ 𝑥𝐴𝑦𝑥𝑧𝐵 ( 𝑦𝑧𝑧𝑥 ) )
17 1 2 isfne2 ( 𝐵𝐶 → ( 𝐴 Fne 𝐵 ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥𝐴𝑦𝑥𝑧𝐵 ( 𝑦𝑧𝑧𝑥 ) ) ) )
18 17 3ad2ant1 ( ( 𝐵𝐶𝐴𝐵𝑋 = 𝑌 ) → ( 𝐴 Fne 𝐵 ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥𝐴𝑦𝑥𝑧𝐵 ( 𝑦𝑧𝑧𝑥 ) ) ) )
19 3 16 18 mpbir2and ( ( 𝐵𝐶𝐴𝐵𝑋 = 𝑌 ) → 𝐴 Fne 𝐵 )