Step |
Hyp |
Ref |
Expression |
1 |
|
fness.1 |
⊢ 𝑋 = ∪ 𝐴 |
2 |
|
fness.2 |
⊢ 𝑌 = ∪ 𝐵 |
3 |
|
simp3 |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌 ) → 𝑋 = 𝑌 ) |
4 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
5 |
4
|
3adant3 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) → 𝑥 ∈ 𝐵 ) |
6 |
|
simp3 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑥 ) |
7 |
|
ssid |
⊢ 𝑥 ⊆ 𝑥 |
8 |
6 7
|
jctir |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) → ( 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑥 ) ) |
9 |
|
elequ2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑥 ) ) |
10 |
|
sseq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ⊆ 𝑥 ↔ 𝑥 ⊆ 𝑥 ) ) |
11 |
9 10
|
anbi12d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ↔ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑥 ) ) ) |
12 |
11
|
rspcev |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑥 ) ) → ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) |
13 |
5 8 12
|
syl2anc |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) |
14 |
13
|
3expib |
⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) ) |
15 |
14
|
ralrimivv |
⊢ ( 𝐴 ⊆ 𝐵 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) |
16 |
15
|
3ad2ant2 |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) |
17 |
1 2
|
isfne2 |
⊢ ( 𝐵 ∈ 𝐶 → ( 𝐴 Fne 𝐵 ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) ) ) |
18 |
17
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌 ) → ( 𝐴 Fne 𝐵 ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) ) ) |
19 |
3 16 18
|
mpbir2and |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌 ) → 𝐴 Fne 𝐵 ) |