Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ∪ 𝐴 = ∪ 𝐴 |
2 |
|
ssid |
⊢ 𝑥 ⊆ 𝑥 |
3 |
|
elequ2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑥 ) ) |
4 |
|
sseq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ⊆ 𝑥 ↔ 𝑥 ⊆ 𝑥 ) ) |
5 |
3 4
|
anbi12d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ↔ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑥 ) ) ) |
6 |
5
|
rspcev |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑥 ) ) → ∃ 𝑧 ∈ 𝐴 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) |
7 |
2 6
|
mpanr2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑧 ∈ 𝐴 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) |
8 |
7
|
rgen2 |
⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐴 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) |
9 |
1 8
|
pm3.2i |
⊢ ( ∪ 𝐴 = ∪ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐴 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) |
10 |
1 1
|
isfne2 |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 Fne 𝐴 ↔ ( ∪ 𝐴 = ∪ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐴 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) ) ) |
11 |
9 10
|
mpbiri |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 Fne 𝐴 ) |