Metamath Proof Explorer


Theorem fneref

Description: Reflexivity of the fineness relation. (Contributed by Jeff Hankins, 12-Oct-2009)

Ref Expression
Assertion fneref ( 𝐴𝑉𝐴 Fne 𝐴 )

Proof

Step Hyp Ref Expression
1 eqid 𝐴 = 𝐴
2 ssid 𝑥𝑥
3 elequ2 ( 𝑧 = 𝑥 → ( 𝑦𝑧𝑦𝑥 ) )
4 sseq1 ( 𝑧 = 𝑥 → ( 𝑧𝑥𝑥𝑥 ) )
5 3 4 anbi12d ( 𝑧 = 𝑥 → ( ( 𝑦𝑧𝑧𝑥 ) ↔ ( 𝑦𝑥𝑥𝑥 ) ) )
6 5 rspcev ( ( 𝑥𝐴 ∧ ( 𝑦𝑥𝑥𝑥 ) ) → ∃ 𝑧𝐴 ( 𝑦𝑧𝑧𝑥 ) )
7 2 6 mpanr2 ( ( 𝑥𝐴𝑦𝑥 ) → ∃ 𝑧𝐴 ( 𝑦𝑧𝑧𝑥 ) )
8 7 rgen2 𝑥𝐴𝑦𝑥𝑧𝐴 ( 𝑦𝑧𝑧𝑥 )
9 1 8 pm3.2i ( 𝐴 = 𝐴 ∧ ∀ 𝑥𝐴𝑦𝑥𝑧𝐴 ( 𝑦𝑧𝑧𝑥 ) )
10 1 1 isfne2 ( 𝐴𝑉 → ( 𝐴 Fne 𝐴 ↔ ( 𝐴 = 𝐴 ∧ ∀ 𝑥𝐴𝑦𝑥𝑧𝐴 ( 𝑦𝑧𝑧𝑥 ) ) ) )
11 9 10 mpbiri ( 𝐴𝑉𝐴 Fne 𝐴 )