Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ∪ 𝐴 = ∪ 𝐴 |
2 |
|
eqid |
⊢ ∪ 𝐵 = ∪ 𝐵 |
3 |
1 2
|
fnebas |
⊢ ( 𝐴 Fne 𝐵 → ∪ 𝐴 = ∪ 𝐵 ) |
4 |
|
eqid |
⊢ ∪ 𝐶 = ∪ 𝐶 |
5 |
2 4
|
fnebas |
⊢ ( 𝐵 Fne 𝐶 → ∪ 𝐵 = ∪ 𝐶 ) |
6 |
3 5
|
sylan9eq |
⊢ ( ( 𝐴 Fne 𝐵 ∧ 𝐵 Fne 𝐶 ) → ∪ 𝐴 = ∪ 𝐶 ) |
7 |
|
fnerel |
⊢ Rel Fne |
8 |
7
|
brrelex2i |
⊢ ( 𝐴 Fne 𝐵 → 𝐵 ∈ V ) |
9 |
1 2
|
isfne4b |
⊢ ( 𝐵 ∈ V → ( 𝐴 Fne 𝐵 ↔ ( ∪ 𝐴 = ∪ 𝐵 ∧ ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐵 ) ) ) ) |
10 |
9
|
simplbda |
⊢ ( ( 𝐵 ∈ V ∧ 𝐴 Fne 𝐵 ) → ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐵 ) ) |
11 |
8 10
|
mpancom |
⊢ ( 𝐴 Fne 𝐵 → ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐵 ) ) |
12 |
7
|
brrelex2i |
⊢ ( 𝐵 Fne 𝐶 → 𝐶 ∈ V ) |
13 |
2 4
|
isfne4b |
⊢ ( 𝐶 ∈ V → ( 𝐵 Fne 𝐶 ↔ ( ∪ 𝐵 = ∪ 𝐶 ∧ ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐶 ) ) ) ) |
14 |
13
|
simplbda |
⊢ ( ( 𝐶 ∈ V ∧ 𝐵 Fne 𝐶 ) → ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐶 ) ) |
15 |
12 14
|
mpancom |
⊢ ( 𝐵 Fne 𝐶 → ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐶 ) ) |
16 |
11 15
|
sylan9ss |
⊢ ( ( 𝐴 Fne 𝐵 ∧ 𝐵 Fne 𝐶 ) → ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐶 ) ) |
17 |
12
|
adantl |
⊢ ( ( 𝐴 Fne 𝐵 ∧ 𝐵 Fne 𝐶 ) → 𝐶 ∈ V ) |
18 |
1 4
|
isfne4b |
⊢ ( 𝐶 ∈ V → ( 𝐴 Fne 𝐶 ↔ ( ∪ 𝐴 = ∪ 𝐶 ∧ ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐶 ) ) ) ) |
19 |
17 18
|
syl |
⊢ ( ( 𝐴 Fne 𝐵 ∧ 𝐵 Fne 𝐶 ) → ( 𝐴 Fne 𝐶 ↔ ( ∪ 𝐴 = ∪ 𝐶 ∧ ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐶 ) ) ) ) |
20 |
6 16 19
|
mpbir2and |
⊢ ( ( 𝐴 Fne 𝐵 ∧ 𝐵 Fne 𝐶 ) → 𝐴 Fne 𝐶 ) |