Metamath Proof Explorer


Theorem fnetr

Description: Transitivity of the fineness relation. (Contributed by Jeff Hankins, 5-Oct-2009) (Proof shortened by Mario Carneiro, 11-Sep-2015)

Ref Expression
Assertion fnetr ( ( 𝐴 Fne 𝐵𝐵 Fne 𝐶 ) → 𝐴 Fne 𝐶 )

Proof

Step Hyp Ref Expression
1 eqid 𝐴 = 𝐴
2 eqid 𝐵 = 𝐵
3 1 2 fnebas ( 𝐴 Fne 𝐵 𝐴 = 𝐵 )
4 eqid 𝐶 = 𝐶
5 2 4 fnebas ( 𝐵 Fne 𝐶 𝐵 = 𝐶 )
6 3 5 sylan9eq ( ( 𝐴 Fne 𝐵𝐵 Fne 𝐶 ) → 𝐴 = 𝐶 )
7 fnerel Rel Fne
8 7 brrelex2i ( 𝐴 Fne 𝐵𝐵 ∈ V )
9 1 2 isfne4b ( 𝐵 ∈ V → ( 𝐴 Fne 𝐵 ↔ ( 𝐴 = 𝐵 ∧ ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐵 ) ) ) )
10 9 simplbda ( ( 𝐵 ∈ V ∧ 𝐴 Fne 𝐵 ) → ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐵 ) )
11 8 10 mpancom ( 𝐴 Fne 𝐵 → ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐵 ) )
12 7 brrelex2i ( 𝐵 Fne 𝐶𝐶 ∈ V )
13 2 4 isfne4b ( 𝐶 ∈ V → ( 𝐵 Fne 𝐶 ↔ ( 𝐵 = 𝐶 ∧ ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐶 ) ) ) )
14 13 simplbda ( ( 𝐶 ∈ V ∧ 𝐵 Fne 𝐶 ) → ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐶 ) )
15 12 14 mpancom ( 𝐵 Fne 𝐶 → ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐶 ) )
16 11 15 sylan9ss ( ( 𝐴 Fne 𝐵𝐵 Fne 𝐶 ) → ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐶 ) )
17 12 adantl ( ( 𝐴 Fne 𝐵𝐵 Fne 𝐶 ) → 𝐶 ∈ V )
18 1 4 isfne4b ( 𝐶 ∈ V → ( 𝐴 Fne 𝐶 ↔ ( 𝐴 = 𝐶 ∧ ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐶 ) ) ) )
19 17 18 syl ( ( 𝐴 Fne 𝐵𝐵 Fne 𝐶 ) → ( 𝐴 Fne 𝐶 ↔ ( 𝐴 = 𝐶 ∧ ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐶 ) ) ) )
20 6 16 19 mpbir2and ( ( 𝐴 Fne 𝐵𝐵 Fne 𝐶 ) → 𝐴 Fne 𝐶 )