Metamath Proof Explorer


Theorem fnetr

Description: Transitivity of the fineness relation. (Contributed by Jeff Hankins, 5-Oct-2009) (Proof shortened by Mario Carneiro, 11-Sep-2015)

Ref Expression
Assertion fnetr A Fne B B Fne C A Fne C

Proof

Step Hyp Ref Expression
1 eqid A = A
2 eqid B = B
3 1 2 fnebas A Fne B A = B
4 eqid C = C
5 2 4 fnebas B Fne C B = C
6 3 5 sylan9eq A Fne B B Fne C A = C
7 fnerel Rel Fne
8 7 brrelex2i A Fne B B V
9 1 2 isfne4b B V A Fne B A = B topGen A topGen B
10 9 simplbda B V A Fne B topGen A topGen B
11 8 10 mpancom A Fne B topGen A topGen B
12 7 brrelex2i B Fne C C V
13 2 4 isfne4b C V B Fne C B = C topGen B topGen C
14 13 simplbda C V B Fne C topGen B topGen C
15 12 14 mpancom B Fne C topGen B topGen C
16 11 15 sylan9ss A Fne B B Fne C topGen A topGen C
17 12 adantl A Fne B B Fne C C V
18 1 4 isfne4b C V A Fne C A = C topGen A topGen C
19 17 18 syl A Fne B B Fne C A Fne C A = C topGen A topGen C
20 6 16 19 mpbir2and A Fne B B Fne C A Fne C