Metamath Proof Explorer


Theorem toponmax

Description: The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion toponmax
|- ( J e. ( TopOn ` B ) -> B e. J )

Proof

Step Hyp Ref Expression
1 toponuni
 |-  ( J e. ( TopOn ` B ) -> B = U. J )
2 topontop
 |-  ( J e. ( TopOn ` B ) -> J e. Top )
3 eqid
 |-  U. J = U. J
4 3 topopn
 |-  ( J e. Top -> U. J e. J )
5 2 4 syl
 |-  ( J e. ( TopOn ` B ) -> U. J e. J )
6 1 5 eqeltrd
 |-  ( J e. ( TopOn ` B ) -> B e. J )