Description: A topology on a set is a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | topontopon | |- ( J e. ( TopOn ` X ) -> J e. ( TopOn ` U. J ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | topontop | |- ( J e. ( TopOn ` X ) -> J e. Top ) | |
| 2 | toptopon2 | |- ( J e. Top <-> J e. ( TopOn ` U. J ) ) | |
| 3 | 1 2 | sylib | |- ( J e. ( TopOn ` X ) -> J e. ( TopOn ` U. J ) ) |