Metamath Proof Explorer


Theorem tpnzd

Description: An unordered triple containing a set is not empty. (Contributed by Thierry Arnoux, 8-Apr-2019)

Ref Expression
Hypothesis tpnzd.1
|- ( ph -> A e. V )
Assertion tpnzd
|- ( ph -> { A , B , C } =/= (/) )

Proof

Step Hyp Ref Expression
1 tpnzd.1
 |-  ( ph -> A e. V )
2 tpid1g
 |-  ( A e. V -> A e. { A , B , C } )
3 ne0i
 |-  ( A e. { A , B , C } -> { A , B , C } =/= (/) )
4 1 2 3 3syl
 |-  ( ph -> { A , B , C } =/= (/) )