Description: The transposition of a constant operation using the relation representation. (Contributed by SO, 11-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tposconst | |- tpos ( ( A X. B ) X. { C } ) = ( ( B X. A ) X. { C } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstmpo | |- ( ( A X. B ) X. { C } ) = ( x e. A , y e. B |-> C ) |
|
| 2 | 1 | tposmpo | |- tpos ( ( A X. B ) X. { C } ) = ( y e. B , x e. A |-> C ) |
| 3 | fconstmpo | |- ( ( B X. A ) X. { C } ) = ( y e. B , x e. A |-> C ) |
|
| 4 | 2 3 | eqtr4i | |- tpos ( ( A X. B ) X. { C } ) = ( ( B X. A ) X. { C } ) |