| Step | Hyp | Ref | Expression | 
						
							| 1 |  | trliswlk |  |-  ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) | 
						
							| 2 |  | wlkonwlk |  |-  ( F ( Walks ` G ) P -> F ( ( P ` 0 ) ( WalksOn ` G ) ( P ` ( # ` F ) ) ) P ) | 
						
							| 3 | 1 2 | syl |  |-  ( F ( Trails ` G ) P -> F ( ( P ` 0 ) ( WalksOn ` G ) ( P ` ( # ` F ) ) ) P ) | 
						
							| 4 |  | id |  |-  ( F ( Trails ` G ) P -> F ( Trails ` G ) P ) | 
						
							| 5 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 6 | 5 | wlkepvtx |  |-  ( F ( Walks ` G ) P -> ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` ( # ` F ) ) e. ( Vtx ` G ) ) ) | 
						
							| 7 |  | wlkv |  |-  ( F ( Walks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) | 
						
							| 8 |  | 3simpc |  |-  ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F e. _V /\ P e. _V ) ) | 
						
							| 9 | 8 | anim2i |  |-  ( ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` ( # ` F ) ) e. ( Vtx ` G ) ) /\ ( G e. _V /\ F e. _V /\ P e. _V ) ) -> ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` ( # ` F ) ) e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) ) | 
						
							| 10 | 6 7 9 | syl2anc |  |-  ( F ( Walks ` G ) P -> ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` ( # ` F ) ) e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) ) | 
						
							| 11 | 1 10 | syl |  |-  ( F ( Trails ` G ) P -> ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` ( # ` F ) ) e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) ) | 
						
							| 12 | 5 | istrlson |  |-  ( ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` ( # ` F ) ) e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) -> ( F ( ( P ` 0 ) ( TrailsOn ` G ) ( P ` ( # ` F ) ) ) P <-> ( F ( ( P ` 0 ) ( WalksOn ` G ) ( P ` ( # ` F ) ) ) P /\ F ( Trails ` G ) P ) ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( F ( Trails ` G ) P -> ( F ( ( P ` 0 ) ( TrailsOn ` G ) ( P ` ( # ` F ) ) ) P <-> ( F ( ( P ` 0 ) ( WalksOn ` G ) ( P ` ( # ` F ) ) ) P /\ F ( Trails ` G ) P ) ) ) | 
						
							| 14 | 3 4 13 | mpbir2and |  |-  ( F ( Trails ` G ) P -> F ( ( P ` 0 ) ( TrailsOn ` G ) ( P ` ( # ` F ) ) ) P ) |