Metamath Proof Explorer


Theorem truorfal

Description: A \/ identity. (Contributed by Anthony Hart, 22-Oct-2010)

Ref Expression
Assertion truorfal
|- ( ( T. \/ F. ) <-> T. )

Proof

Step Hyp Ref Expression
1 tru
 |-  T.
2 1 orci
 |-  ( T. \/ F. )
3 2 bitru
 |-  ( ( T. \/ F. ) <-> T. )