Metamath Proof Explorer


Theorem truorfal

Description: A \/ identity. (Contributed by Anthony Hart, 22-Oct-2010)

Ref Expression
Assertion truorfal ( ( ⊤ ∨ ⊥ ) ↔ ⊤ )

Proof

Step Hyp Ref Expression
1 tru
2 1 orci ( ⊤ ∨ ⊥ )
3 2 bitru ( ( ⊤ ∨ ⊥ ) ↔ ⊤ )