Metamath Proof Explorer


Theorem trwf

Description: The class of well-founded sets is transitive. (Contributed by Eric Schmidt, 9-Sep-2025)

Ref Expression
Assertion trwf
|- Tr U. ( R1 " On )

Proof

Step Hyp Ref Expression
1 r1elssi
 |-  ( x e. U. ( R1 " On ) -> x C_ U. ( R1 " On ) )
2 1 rgen
 |-  A. x e. U. ( R1 " On ) x C_ U. ( R1 " On )
3 dftr3
 |-  ( Tr U. ( R1 " On ) <-> A. x e. U. ( R1 " On ) x C_ U. ( R1 " On ) )
4 2 3 mpbir
 |-  Tr U. ( R1 " On )