Description: The class of well-founded sets is transitive. (Contributed by Eric Schmidt, 9-Sep-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | trwf | |- Tr U. ( R1 " On ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1elssi | |- ( x e. U. ( R1 " On ) -> x C_ U. ( R1 " On ) ) |
|
2 | 1 | rgen | |- A. x e. U. ( R1 " On ) x C_ U. ( R1 " On ) |
3 | dftr3 | |- ( Tr U. ( R1 " On ) <-> A. x e. U. ( R1 " On ) x C_ U. ( R1 " On ) ) |
|
4 | 2 3 | mpbir | |- Tr U. ( R1 " On ) |