Metamath Proof Explorer


Theorem ts3or3

Description: A Tseitin axiom for triple logical disjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018)

Ref Expression
Assertion ts3or3
|- ( th -> ( -. ch \/ ( ph \/ ps \/ ch ) ) )

Proof

Step Hyp Ref Expression
1 tsor3
 |-  ( th -> ( -. ch \/ ( ( ph \/ ps ) \/ ch ) ) )
2 df-3or
 |-  ( ( ph \/ ps \/ ch ) <-> ( ( ph \/ ps ) \/ ch ) )
3 2 orbi2i
 |-  ( ( -. ch \/ ( ph \/ ps \/ ch ) ) <-> ( -. ch \/ ( ( ph \/ ps ) \/ ch ) ) )
4 1 3 sylibr
 |-  ( th -> ( -. ch \/ ( ph \/ ps \/ ch ) ) )