Metamath Proof Explorer


Theorem tsan2

Description: A Tseitin axiom for logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018)

Ref Expression
Assertion tsan2
|- ( th -> ( ph \/ -. ( ph /\ ps ) ) )

Proof

Step Hyp Ref Expression
1 pm3.14
 |-  ( ( -. ph \/ -. ps ) -> -. ( ph /\ ps ) )
2 1 orcs
 |-  ( -. ph -> -. ( ph /\ ps ) )
3 2 orri
 |-  ( ph \/ -. ( ph /\ ps ) )
4 3 a1i
 |-  ( th -> ( ph \/ -. ( ph /\ ps ) ) )