Metamath Proof Explorer


Theorem tsbi1

Description: A Tseitin axiom for logical biconditional, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018)

Ref Expression
Assertion tsbi1
|- ( th -> ( ( -. ph \/ -. ps ) \/ ( ph <-> ps ) ) )

Proof

Step Hyp Ref Expression
1 pm5.1
 |-  ( ( ph /\ ps ) -> ( ph <-> ps ) )
2 1 olcd
 |-  ( ( ph /\ ps ) -> ( ( -. ph \/ -. ps ) \/ ( ph <-> ps ) ) )
3 pm3.13
 |-  ( -. ( ph /\ ps ) -> ( -. ph \/ -. ps ) )
4 3 orcd
 |-  ( -. ( ph /\ ps ) -> ( ( -. ph \/ -. ps ) \/ ( ph <-> ps ) ) )
5 2 4 pm2.61i
 |-  ( ( -. ph \/ -. ps ) \/ ( ph <-> ps ) )
6 5 a1i
 |-  ( th -> ( ( -. ph \/ -. ps ) \/ ( ph <-> ps ) ) )