Metamath Proof Explorer


Theorem tsbi2

Description: A Tseitin axiom for logical biconditional, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018)

Ref Expression
Assertion tsbi2
|- ( th -> ( ( ph \/ ps ) \/ ( ph <-> ps ) ) )

Proof

Step Hyp Ref Expression
1 pm5.21
 |-  ( ( -. ph /\ -. ps ) -> ( ph <-> ps ) )
2 1 olcd
 |-  ( ( -. ph /\ -. ps ) -> ( ( ph \/ ps ) \/ ( ph <-> ps ) ) )
3 pm4.57
 |-  ( -. ( -. ph /\ -. ps ) <-> ( ph \/ ps ) )
4 3 biimpi
 |-  ( -. ( -. ph /\ -. ps ) -> ( ph \/ ps ) )
5 4 orcd
 |-  ( -. ( -. ph /\ -. ps ) -> ( ( ph \/ ps ) \/ ( ph <-> ps ) ) )
6 2 5 pm2.61i
 |-  ( ( ph \/ ps ) \/ ( ph <-> ps ) )
7 6 a1i
 |-  ( th -> ( ( ph \/ ps ) \/ ( ph <-> ps ) ) )