Description: A Tseitin axiom for logical biconditional, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | tsbi2 | |- ( th -> ( ( ph \/ ps ) \/ ( ph <-> ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21 | |- ( ( -. ph /\ -. ps ) -> ( ph <-> ps ) ) |
|
2 | 1 | olcd | |- ( ( -. ph /\ -. ps ) -> ( ( ph \/ ps ) \/ ( ph <-> ps ) ) ) |
3 | pm4.57 | |- ( -. ( -. ph /\ -. ps ) <-> ( ph \/ ps ) ) |
|
4 | 3 | biimpi | |- ( -. ( -. ph /\ -. ps ) -> ( ph \/ ps ) ) |
5 | 4 | orcd | |- ( -. ( -. ph /\ -. ps ) -> ( ( ph \/ ps ) \/ ( ph <-> ps ) ) ) |
6 | 2 5 | pm2.61i | |- ( ( ph \/ ps ) \/ ( ph <-> ps ) ) |
7 | 6 | a1i | |- ( th -> ( ( ph \/ ps ) \/ ( ph <-> ps ) ) ) |