Metamath Proof Explorer


Theorem tsbi3

Description: A Tseitin axiom for logical biconditional, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018)

Ref Expression
Assertion tsbi3
|- ( th -> ( ( ph \/ -. ps ) \/ -. ( ph <-> ps ) ) )

Proof

Step Hyp Ref Expression
1 biimpr
 |-  ( ( ph <-> ps ) -> ( ps -> ph ) )
2 con34b
 |-  ( ( ps -> ph ) <-> ( -. ph -> -. ps ) )
3 pm2.54
 |-  ( ( -. ph -> -. ps ) -> ( ph \/ -. ps ) )
4 2 3 sylbi
 |-  ( ( ps -> ph ) -> ( ph \/ -. ps ) )
5 1 4 syl
 |-  ( ( ph <-> ps ) -> ( ph \/ -. ps ) )
6 5 con3i
 |-  ( -. ( ph \/ -. ps ) -> -. ( ph <-> ps ) )
7 6 orri
 |-  ( ( ph \/ -. ps ) \/ -. ( ph <-> ps ) )
8 7 a1i
 |-  ( th -> ( ( ph \/ -. ps ) \/ -. ( ph <-> ps ) ) )