Description: A Tseitin axiom for logical biconditional, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | tsbi3 | |- ( th -> ( ( ph \/ -. ps ) \/ -. ( ph <-> ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpr | |- ( ( ph <-> ps ) -> ( ps -> ph ) ) |
|
2 | con34b | |- ( ( ps -> ph ) <-> ( -. ph -> -. ps ) ) |
|
3 | pm2.54 | |- ( ( -. ph -> -. ps ) -> ( ph \/ -. ps ) ) |
|
4 | 2 3 | sylbi | |- ( ( ps -> ph ) -> ( ph \/ -. ps ) ) |
5 | 1 4 | syl | |- ( ( ph <-> ps ) -> ( ph \/ -. ps ) ) |
6 | 5 | con3i | |- ( -. ( ph \/ -. ps ) -> -. ( ph <-> ps ) ) |
7 | 6 | orri | |- ( ( ph \/ -. ps ) \/ -. ( ph <-> ps ) ) |
8 | 7 | a1i | |- ( th -> ( ( ph \/ -. ps ) \/ -. ( ph <-> ps ) ) ) |