Description: A Tseitin axiom for logical biconditional, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tsbi3 | |- ( th -> ( ( ph \/ -. ps ) \/ -. ( ph <-> ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpr | |- ( ( ph <-> ps ) -> ( ps -> ph ) ) |
|
| 2 | con34b | |- ( ( ps -> ph ) <-> ( -. ph -> -. ps ) ) |
|
| 3 | pm2.54 | |- ( ( -. ph -> -. ps ) -> ( ph \/ -. ps ) ) |
|
| 4 | 2 3 | sylbi | |- ( ( ps -> ph ) -> ( ph \/ -. ps ) ) |
| 5 | 1 4 | syl | |- ( ( ph <-> ps ) -> ( ph \/ -. ps ) ) |
| 6 | 5 | con3i | |- ( -. ( ph \/ -. ps ) -> -. ( ph <-> ps ) ) |
| 7 | 6 | orri | |- ( ( ph \/ -. ps ) \/ -. ( ph <-> ps ) ) |
| 8 | 7 | a1i | |- ( th -> ( ( ph \/ -. ps ) \/ -. ( ph <-> ps ) ) ) |