Metamath Proof Explorer


Theorem tsim3

Description: A Tseitin axiom for logical implication, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018)

Ref Expression
Assertion tsim3
|- ( th -> ( -. ps \/ ( ph -> ps ) ) )

Proof

Step Hyp Ref Expression
1 ax-1
 |-  ( ps -> ( ph -> ps ) )
2 1 imori
 |-  ( -. ps \/ ( ph -> ps ) )
3 2 a1i
 |-  ( th -> ( -. ps \/ ( ph -> ps ) ) )