Metamath Proof Explorer


Theorem tsxo1

Description: A Tseitin axiom for logical exclusive disjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018)

Ref Expression
Assertion tsxo1
|- ( th -> ( ( -. ph \/ -. ps ) \/ -. ( ph \/_ ps ) ) )

Proof

Step Hyp Ref Expression
1 tsbi1
 |-  ( th -> ( ( -. ph \/ -. ps ) \/ ( ph <-> ps ) ) )
2 xnor
 |-  ( ( ph <-> ps ) <-> -. ( ph \/_ ps ) )
3 2 orbi2i
 |-  ( ( ( -. ph \/ -. ps ) \/ ( ph <-> ps ) ) <-> ( ( -. ph \/ -. ps ) \/ -. ( ph \/_ ps ) ) )
4 1 3 sylib
 |-  ( th -> ( ( -. ph \/ -. ps ) \/ -. ( ph \/_ ps ) ) )