Description: A Tseitin axiom for logical exclusive disjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | tsxo1 | |- ( th -> ( ( -. ph \/ -. ps ) \/ -. ( ph \/_ ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsbi1 | |- ( th -> ( ( -. ph \/ -. ps ) \/ ( ph <-> ps ) ) ) |
|
2 | xnor | |- ( ( ph <-> ps ) <-> -. ( ph \/_ ps ) ) |
|
3 | 2 | orbi2i | |- ( ( ( -. ph \/ -. ps ) \/ ( ph <-> ps ) ) <-> ( ( -. ph \/ -. ps ) \/ -. ( ph \/_ ps ) ) ) |
4 | 1 3 | sylib | |- ( th -> ( ( -. ph \/ -. ps ) \/ -. ( ph \/_ ps ) ) ) |