Description: From these two negated implications it is not the case their nonnegated forms are both true. (Contributed by Jarvin Udandy, 11-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | twonotinotbothi.1 | |- -. ( ph -> ps ) |
|
| twonotinotbothi.2 | |- -. ( ch -> th ) |
||
| Assertion | twonotinotbothi | |- -. ( ( ph -> ps ) /\ ( ch -> th ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | twonotinotbothi.1 | |- -. ( ph -> ps ) |
|
| 2 | twonotinotbothi.2 | |- -. ( ch -> th ) |
|
| 3 | 1 | orci | |- ( -. ( ph -> ps ) \/ -. ( ch -> th ) ) |
| 4 | pm3.14 | |- ( ( -. ( ph -> ps ) \/ -. ( ch -> th ) ) -> -. ( ( ph -> ps ) /\ ( ch -> th ) ) ) |
|
| 5 | 3 4 | ax-mp | |- -. ( ( ph -> ps ) /\ ( ch -> th ) ) |