| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uhgrstrrepe.v |
|- V = ( Base ` G ) |
| 2 |
|
uhgrstrrepe.i |
|- I = ( .ef ` ndx ) |
| 3 |
|
uhgrstrrepe.s |
|- ( ph -> G Struct X ) |
| 4 |
|
uhgrstrrepe.b |
|- ( ph -> ( Base ` ndx ) e. dom G ) |
| 5 |
|
uhgrstrrepe.w |
|- ( ph -> E e. W ) |
| 6 |
|
uhgrstrrepe.e |
|- ( ph -> E : dom E --> ( ~P V \ { (/) } ) ) |
| 7 |
2 3 4 5
|
setsvtx |
|- ( ph -> ( Vtx ` ( G sSet <. I , E >. ) ) = ( Base ` G ) ) |
| 8 |
7 1
|
eqtr4di |
|- ( ph -> ( Vtx ` ( G sSet <. I , E >. ) ) = V ) |
| 9 |
8
|
pweqd |
|- ( ph -> ~P ( Vtx ` ( G sSet <. I , E >. ) ) = ~P V ) |
| 10 |
9
|
difeq1d |
|- ( ph -> ( ~P ( Vtx ` ( G sSet <. I , E >. ) ) \ { (/) } ) = ( ~P V \ { (/) } ) ) |
| 11 |
10
|
feq3d |
|- ( ph -> ( E : dom E --> ( ~P ( Vtx ` ( G sSet <. I , E >. ) ) \ { (/) } ) <-> E : dom E --> ( ~P V \ { (/) } ) ) ) |
| 12 |
6 11
|
mpbird |
|- ( ph -> E : dom E --> ( ~P ( Vtx ` ( G sSet <. I , E >. ) ) \ { (/) } ) ) |
| 13 |
2 3 4 5
|
setsiedg |
|- ( ph -> ( iEdg ` ( G sSet <. I , E >. ) ) = E ) |
| 14 |
13
|
dmeqd |
|- ( ph -> dom ( iEdg ` ( G sSet <. I , E >. ) ) = dom E ) |
| 15 |
13 14
|
feq12d |
|- ( ph -> ( ( iEdg ` ( G sSet <. I , E >. ) ) : dom ( iEdg ` ( G sSet <. I , E >. ) ) --> ( ~P ( Vtx ` ( G sSet <. I , E >. ) ) \ { (/) } ) <-> E : dom E --> ( ~P ( Vtx ` ( G sSet <. I , E >. ) ) \ { (/) } ) ) ) |
| 16 |
12 15
|
mpbird |
|- ( ph -> ( iEdg ` ( G sSet <. I , E >. ) ) : dom ( iEdg ` ( G sSet <. I , E >. ) ) --> ( ~P ( Vtx ` ( G sSet <. I , E >. ) ) \ { (/) } ) ) |
| 17 |
|
ovex |
|- ( G sSet <. I , E >. ) e. _V |
| 18 |
|
eqid |
|- ( Vtx ` ( G sSet <. I , E >. ) ) = ( Vtx ` ( G sSet <. I , E >. ) ) |
| 19 |
|
eqid |
|- ( iEdg ` ( G sSet <. I , E >. ) ) = ( iEdg ` ( G sSet <. I , E >. ) ) |
| 20 |
18 19
|
isuhgr |
|- ( ( G sSet <. I , E >. ) e. _V -> ( ( G sSet <. I , E >. ) e. UHGraph <-> ( iEdg ` ( G sSet <. I , E >. ) ) : dom ( iEdg ` ( G sSet <. I , E >. ) ) --> ( ~P ( Vtx ` ( G sSet <. I , E >. ) ) \ { (/) } ) ) ) |
| 21 |
17 20
|
mp1i |
|- ( ph -> ( ( G sSet <. I , E >. ) e. UHGraph <-> ( iEdg ` ( G sSet <. I , E >. ) ) : dom ( iEdg ` ( G sSet <. I , E >. ) ) --> ( ~P ( Vtx ` ( G sSet <. I , E >. ) ) \ { (/) } ) ) ) |
| 22 |
16 21
|
mpbird |
|- ( ph -> ( G sSet <. I , E >. ) e. UHGraph ) |