Step |
Hyp |
Ref |
Expression |
1 |
|
umgr0e.g |
|- ( ph -> G e. W ) |
2 |
|
umgr0e.e |
|- ( ph -> ( iEdg ` G ) = (/) ) |
3 |
2
|
f10d |
|- ( ph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) |
4 |
|
f1f |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) |
5 |
3 4
|
syl |
|- ( ph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) |
6 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
7 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
8 |
6 7
|
isumgr |
|- ( G e. W -> ( G e. UMGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) ) |
9 |
1 8
|
syl |
|- ( ph -> ( G e. UMGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) ) |
10 |
5 9
|
mpbird |
|- ( ph -> G e. UMGraph ) |