Metamath Proof Explorer


Theorem umgr0e

Description: The empty graph, with vertices but no edges, is a multigraph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 25-Nov-2020)

Ref Expression
Hypotheses umgr0e.g φGW
umgr0e.e φiEdgG=
Assertion umgr0e φGUMGraph

Proof

Step Hyp Ref Expression
1 umgr0e.g φGW
2 umgr0e.e φiEdgG=
3 2 f10d φiEdgG:domiEdgG1-1x𝒫VtxG|x=2
4 f1f iEdgG:domiEdgG1-1x𝒫VtxG|x=2iEdgG:domiEdgGx𝒫VtxG|x=2
5 3 4 syl φiEdgG:domiEdgGx𝒫VtxG|x=2
6 eqid VtxG=VtxG
7 eqid iEdgG=iEdgG
8 6 7 isumgr GWGUMGraphiEdgG:domiEdgGx𝒫VtxG|x=2
9 1 8 syl φGUMGraphiEdgG:domiEdgGx𝒫VtxG|x=2
10 5 9 mpbird φGUMGraph