| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isumgr.v |
|- V = ( Vtx ` G ) |
| 2 |
|
isumgr.e |
|- E = ( iEdg ` G ) |
| 3 |
1 2
|
umgrf |
|- ( G e. UMGraph -> E : dom E --> { x e. ~P V | ( # ` x ) = 2 } ) |
| 4 |
3
|
ffvelcdmda |
|- ( ( G e. UMGraph /\ X e. dom E ) -> ( E ` X ) e. { x e. ~P V | ( # ` x ) = 2 } ) |
| 5 |
|
fveqeq2 |
|- ( x = ( E ` X ) -> ( ( # ` x ) = 2 <-> ( # ` ( E ` X ) ) = 2 ) ) |
| 6 |
5
|
elrab |
|- ( ( E ` X ) e. { x e. ~P V | ( # ` x ) = 2 } <-> ( ( E ` X ) e. ~P V /\ ( # ` ( E ` X ) ) = 2 ) ) |
| 7 |
6
|
simprbi |
|- ( ( E ` X ) e. { x e. ~P V | ( # ` x ) = 2 } -> ( # ` ( E ` X ) ) = 2 ) |
| 8 |
4 7
|
syl |
|- ( ( G e. UMGraph /\ X e. dom E ) -> ( # ` ( E ` X ) ) = 2 ) |