| Step |
Hyp |
Ref |
Expression |
| 1 |
|
umgrupgr |
|- ( G e. UMGraph -> G e. UPGraph ) |
| 2 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
| 3 |
2
|
upgrwlkvtxedg |
|- ( ( G e. UPGraph /\ F ( Walks ` G ) P ) -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. ( Edg ` G ) ) |
| 4 |
1 3
|
sylan |
|- ( ( G e. UMGraph /\ F ( Walks ` G ) P ) -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. ( Edg ` G ) ) |
| 5 |
2
|
umgredgne |
|- ( ( G e. UMGraph /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } e. ( Edg ` G ) ) -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |
| 6 |
5
|
ex |
|- ( G e. UMGraph -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } e. ( Edg ` G ) -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
| 7 |
6
|
adantr |
|- ( ( G e. UMGraph /\ F ( Walks ` G ) P ) -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } e. ( Edg ` G ) -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
| 8 |
7
|
ralimdv |
|- ( ( G e. UMGraph /\ F ( Walks ` G ) P ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. ( Edg ` G ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
| 9 |
4 8
|
mpd |
|- ( ( G e. UMGraph /\ F ( Walks ` G ) P ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |