Metamath Proof Explorer


Theorem undif2

Description: Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif ). Part of proof of Corollary 6K of Enderton p. 144. (Contributed by NM, 19-May-1998)

Ref Expression
Assertion undif2
|- ( A u. ( B \ A ) ) = ( A u. B )

Proof

Step Hyp Ref Expression
1 uncom
 |-  ( A u. ( B \ A ) ) = ( ( B \ A ) u. A )
2 undif1
 |-  ( ( B \ A ) u. A ) = ( B u. A )
3 uncom
 |-  ( B u. A ) = ( A u. B )
4 1 2 3 3eqtri
 |-  ( A u. ( B \ A ) ) = ( A u. B )