Description: Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif ). Part of proof of Corollary 6K of Enderton p. 144. (Contributed by NM, 19-May-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | undif2 | |- ( A u. ( B \ A ) ) = ( A u. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom | |- ( A u. ( B \ A ) ) = ( ( B \ A ) u. A ) |
|
2 | undif1 | |- ( ( B \ A ) u. A ) = ( B u. A ) |
|
3 | uncom | |- ( B u. A ) = ( A u. B ) |
|
4 | 1 2 3 | 3eqtri | |- ( A u. ( B \ A ) ) = ( A u. B ) |