Metamath Proof Explorer


Theorem unissi

Description: Subclass relationship for subclass union. Inference form of uniss . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypothesis unissi.1
|- A C_ B
Assertion unissi
|- U. A C_ U. B

Proof

Step Hyp Ref Expression
1 unissi.1
 |-  A C_ B
2 uniss
 |-  ( A C_ B -> U. A C_ U. B )
3 1 2 ax-mp
 |-  U. A C_ U. B