Description: A symmetry with A. .
See negsym1 for more information. (Contributed by Anthony Hart, 4-Sep-2011) (Proof shortened by Mario Carneiro, 11-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | unisym1 | |- ( A. x A. x F. -> A. x ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | falim | |- ( F. -> A. x ph ) |
|
2 | 1 | sps | |- ( A. x F. -> A. x ph ) |
3 | 2 | sps | |- ( A. x A. x F. -> A. x ph ) |