Metamath Proof Explorer


Theorem unisym1

Description: A symmetry with A. .

See negsym1 for more information. (Contributed by Anthony Hart, 4-Sep-2011) (Proof shortened by Mario Carneiro, 11-Dec-2016)

Ref Expression
Assertion unisym1
|- ( A. x A. x F. -> A. x ph )

Proof

Step Hyp Ref Expression
1 falim
 |-  ( F. -> A. x ph )
2 1 sps
 |-  ( A. x F. -> A. x ph )
3 2 sps
 |-  ( A. x A. x F. -> A. x ph )