| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
|- g e. _V |
| 2 |
1
|
a1i |
|- ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = (/) ) -> g e. _V ) |
| 3 |
|
simpr |
|- ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = (/) ) -> ( iEdg ` g ) = (/) ) |
| 4 |
2 3
|
upgr0e |
|- ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = (/) ) -> g e. UPGraph ) |
| 5 |
4
|
ax-gen |
|- A. g ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = (/) ) -> g e. UPGraph ) |
| 6 |
5
|
a1i |
|- ( V e. W -> A. g ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = (/) ) -> g e. UPGraph ) ) |
| 7 |
|
id |
|- ( V e. W -> V e. W ) |
| 8 |
|
0ex |
|- (/) e. _V |
| 9 |
8
|
a1i |
|- ( V e. W -> (/) e. _V ) |
| 10 |
6 7 9
|
gropeld |
|- ( V e. W -> <. V , (/) >. e. UPGraph ) |