| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isupgr.v |
|- V = ( Vtx ` G ) |
| 2 |
|
isupgr.e |
|- E = ( iEdg ` G ) |
| 3 |
1 2
|
upgrf |
|- ( G e. UPGraph -> E : dom E --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 4 |
|
fndm |
|- ( E Fn A -> dom E = A ) |
| 5 |
4
|
feq2d |
|- ( E Fn A -> ( E : dom E --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } <-> E : A --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
| 6 |
3 5
|
syl5ibcom |
|- ( G e. UPGraph -> ( E Fn A -> E : A --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
| 7 |
6
|
imp |
|- ( ( G e. UPGraph /\ E Fn A ) -> E : A --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |