| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upgrle2.i |  |-  I = ( iEdg ` G ) | 
						
							| 2 |  | simpl |  |-  ( ( G e. UPGraph /\ X e. dom I ) -> G e. UPGraph ) | 
						
							| 3 |  | upgruhgr |  |-  ( G e. UPGraph -> G e. UHGraph ) | 
						
							| 4 | 1 | uhgrfun |  |-  ( G e. UHGraph -> Fun I ) | 
						
							| 5 | 3 4 | syl |  |-  ( G e. UPGraph -> Fun I ) | 
						
							| 6 | 5 | funfnd |  |-  ( G e. UPGraph -> I Fn dom I ) | 
						
							| 7 | 6 | adantr |  |-  ( ( G e. UPGraph /\ X e. dom I ) -> I Fn dom I ) | 
						
							| 8 |  | simpr |  |-  ( ( G e. UPGraph /\ X e. dom I ) -> X e. dom I ) | 
						
							| 9 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 10 | 9 1 | upgrle |  |-  ( ( G e. UPGraph /\ I Fn dom I /\ X e. dom I ) -> ( # ` ( I ` X ) ) <_ 2 ) | 
						
							| 11 | 2 7 8 10 | syl3anc |  |-  ( ( G e. UPGraph /\ X e. dom I ) -> ( # ` ( I ` X ) ) <_ 2 ) |