| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upgrwlkcompim.v |
|- V = ( Vtx ` G ) |
| 2 |
|
upgrwlkcompim.i |
|- I = ( iEdg ` G ) |
| 3 |
|
upgrwlkcompim.1 |
|- F = ( 1st ` W ) |
| 4 |
|
upgrwlkcompim.2 |
|- P = ( 2nd ` W ) |
| 5 |
|
wlkcpr |
|- ( W e. ( Walks ` G ) <-> ( 1st ` W ) ( Walks ` G ) ( 2nd ` W ) ) |
| 6 |
3 4
|
breq12i |
|- ( F ( Walks ` G ) P <-> ( 1st ` W ) ( Walks ` G ) ( 2nd ` W ) ) |
| 7 |
5 6
|
bitr4i |
|- ( W e. ( Walks ` G ) <-> F ( Walks ` G ) P ) |
| 8 |
1 2
|
upgriswlk |
|- ( G e. UPGraph -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
| 9 |
8
|
biimpd |
|- ( G e. UPGraph -> ( F ( Walks ` G ) P -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
| 10 |
7 9
|
biimtrid |
|- ( G e. UPGraph -> ( W e. ( Walks ` G ) -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
| 11 |
10
|
imp |
|- ( ( G e. UPGraph /\ W e. ( Walks ` G ) ) -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |