Metamath Proof Explorer


Theorem upwrdfi

Description: There is a finite number of strictly increasing sequences of a given length over finite alphabet. Trivially holds for invalid lengths where there're zero matching sequences. (Contributed by Ender Ting, 5-Jan-2024)

Ref Expression
Assertion upwrdfi
|- ( S e. Fin -> { a e. UpWord S | ( # ` a ) = T } e. Fin )

Proof

Step Hyp Ref Expression
1 wrdnfi
 |-  ( S e. Fin -> { a e. Word S | ( # ` a ) = T } e. Fin )
2 upwordisword
 |-  ( a e. UpWord S -> a e. Word S )
3 2 ad2antrl
 |-  ( ( T. /\ ( a e. UpWord S /\ ( # ` a ) = T ) ) -> a e. Word S )
4 3 rabss3d
 |-  ( T. -> { a e. UpWord S | ( # ` a ) = T } C_ { a e. Word S | ( # ` a ) = T } )
5 4 mptru
 |-  { a e. UpWord S | ( # ` a ) = T } C_ { a e. Word S | ( # ` a ) = T }
6 ssfi
 |-  ( ( { a e. Word S | ( # ` a ) = T } e. Fin /\ { a e. UpWord S | ( # ` a ) = T } C_ { a e. Word S | ( # ` a ) = T } ) -> { a e. UpWord S | ( # ` a ) = T } e. Fin )
7 5 6 mpan2
 |-  ( { a e. Word S | ( # ` a ) = T } e. Fin -> { a e. UpWord S | ( # ` a ) = T } e. Fin )
8 1 7 syl
 |-  ( S e. Fin -> { a e. UpWord S | ( # ` a ) = T } e. Fin )