Metamath Proof Explorer


Theorem upwordisword

Description: Any increasing sequence is a sequence. (Contributed by Ender Ting, 19-Nov-2024)

Ref Expression
Assertion upwordisword
|- ( A e. UpWord S -> A e. Word S )

Proof

Step Hyp Ref Expression
1 eleq1
 |-  ( w = A -> ( w e. Word S <-> A e. Word S ) )
2 df-upword
 |-  UpWord S = { w | ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) }
3 2 abeq2i
 |-  ( w e. UpWord S <-> ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) )
4 3 simplbi
 |-  ( w e. UpWord S -> w e. Word S )
5 1 4 vtoclga
 |-  ( A e. UpWord S -> A e. Word S )