Description: Any increasing sequence is a sequence. (Contributed by Ender Ting, 19-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | upwordisword | |- ( A e. UpWord S -> A e. Word S ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 | |- ( w = A -> ( w e. Word S <-> A e. Word S ) ) |
|
2 | df-upword | |- UpWord S = { w | ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) } |
|
3 | 2 | abeq2i | |- ( w e. UpWord S <-> ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) ) |
4 | 3 | simplbi | |- ( w e. UpWord S -> w e. Word S ) |
5 | 1 4 | vtoclga | |- ( A e. UpWord S -> A e. Word S ) |