Metamath Proof Explorer


Theorem singoutnword

Description: Singleton with character out of range V is not a word for that range. (Contributed by Ender Ting, 21-Nov-2024)

Ref Expression
Hypothesis singoutnword.1
|- A e. _V
Assertion singoutnword
|- ( -. A e. V -> -. <" A "> e. Word V )

Proof

Step Hyp Ref Expression
1 singoutnword.1
 |-  A e. _V
2 s1fv
 |-  ( A e. _V -> ( <" A "> ` 0 ) = A )
3 1 2 ax-mp
 |-  ( <" A "> ` 0 ) = A
4 s1nz
 |-  <" A "> =/= (/)
5 fstwrdne
 |-  ( ( <" A "> e. Word V /\ <" A "> =/= (/) ) -> ( <" A "> ` 0 ) e. V )
6 4 5 mpan2
 |-  ( <" A "> e. Word V -> ( <" A "> ` 0 ) e. V )
7 3 6 eqeltrrid
 |-  ( <" A "> e. Word V -> A e. V )
8 7 con3i
 |-  ( -. A e. V -> -. <" A "> e. Word V )