Metamath Proof Explorer


Theorem singoutnword

Description: Singleton with character out of range V is not a word for that range. (Contributed by Ender Ting, 21-Nov-2024)

Ref Expression
Hypothesis singoutnword.1 A V
Assertion singoutnword ¬ A V ¬ ⟨“ A ”⟩ Word V

Proof

Step Hyp Ref Expression
1 singoutnword.1 A V
2 s1fv A V ⟨“ A ”⟩ 0 = A
3 1 2 ax-mp ⟨“ A ”⟩ 0 = A
4 s1nz ⟨“ A ”⟩
5 fstwrdne ⟨“ A ”⟩ Word V ⟨“ A ”⟩ ⟨“ A ”⟩ 0 V
6 4 5 mpan2 ⟨“ A ”⟩ Word V ⟨“ A ”⟩ 0 V
7 3 6 eqeltrrid ⟨“ A ”⟩ Word V A V
8 7 con3i ¬ A V ¬ ⟨“ A ”⟩ Word V