Metamath Proof Explorer


Theorem singoutnword

Description: Singleton with character out of range V is not a word for that range. (Contributed by Ender Ting, 21-Nov-2024)

Ref Expression
Hypothesis singoutnword.1 𝐴 ∈ V
Assertion singoutnword ( ¬ 𝐴𝑉 → ¬ ⟨“ 𝐴 ”⟩ ∈ Word 𝑉 )

Proof

Step Hyp Ref Expression
1 singoutnword.1 𝐴 ∈ V
2 s1fv ( 𝐴 ∈ V → ( ⟨“ 𝐴 ”⟩ ‘ 0 ) = 𝐴 )
3 1 2 ax-mp ( ⟨“ 𝐴 ”⟩ ‘ 0 ) = 𝐴
4 s1nz ⟨“ 𝐴 ”⟩ ≠ ∅
5 fstwrdne ( ( ⟨“ 𝐴 ”⟩ ∈ Word 𝑉 ∧ ⟨“ 𝐴 ”⟩ ≠ ∅ ) → ( ⟨“ 𝐴 ”⟩ ‘ 0 ) ∈ 𝑉 )
6 4 5 mpan2 ( ⟨“ 𝐴 ”⟩ ∈ Word 𝑉 → ( ⟨“ 𝐴 ”⟩ ‘ 0 ) ∈ 𝑉 )
7 3 6 eqeltrrid ( ⟨“ 𝐴 ”⟩ ∈ Word 𝑉𝐴𝑉 )
8 7 con3i ( ¬ 𝐴𝑉 → ¬ ⟨“ 𝐴 ”⟩ ∈ Word 𝑉 )