Metamath Proof Explorer


Theorem singoutnupword

Description: Singleton with character out of range S is not an increasing sequence for that range. (Contributed by Ender Ting, 22-Nov-2024)

Ref Expression
Hypothesis singoutnupword.1 𝐴 ∈ V
Assertion singoutnupword ( ¬ 𝐴𝑆 → ¬ ⟨“ 𝐴 ”⟩ ∈ UpWord 𝑆 )

Proof

Step Hyp Ref Expression
1 singoutnupword.1 𝐴 ∈ V
2 1 singoutnword ( ¬ 𝐴𝑆 → ¬ ⟨“ 𝐴 ”⟩ ∈ Word 𝑆 )
3 upwordisword ( ⟨“ 𝐴 ”⟩ ∈ UpWord 𝑆 → ⟨“ 𝐴 ”⟩ ∈ Word 𝑆 )
4 2 3 nsyl ( ¬ 𝐴𝑆 → ¬ ⟨“ 𝐴 ”⟩ ∈ UpWord 𝑆 )