Step |
Hyp |
Ref |
Expression |
1 |
|
upwordsing.1 |
⊢ 𝐴 ∈ 𝑆 |
2 |
|
s1cl |
⊢ ( 𝐴 ∈ 𝑆 → 〈“ 𝐴 ”〉 ∈ Word 𝑆 ) |
3 |
|
elab6g |
⊢ ( 〈“ 𝐴 ”〉 ∈ Word 𝑆 → ( 〈“ 𝐴 ”〉 ∈ { 𝑤 ∣ ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤 ‘ 𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) } ↔ ∀ 𝑤 ( 𝑤 = 〈“ 𝐴 ”〉 → ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤 ‘ 𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
4 |
1 2 3
|
mp2b |
⊢ ( 〈“ 𝐴 ”〉 ∈ { 𝑤 ∣ ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤 ‘ 𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) } ↔ ∀ 𝑤 ( 𝑤 = 〈“ 𝐴 ”〉 → ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤 ‘ 𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) ) ) |
5 |
|
eleq1a |
⊢ ( 〈“ 𝐴 ”〉 ∈ Word 𝑆 → ( 𝑤 = 〈“ 𝐴 ”〉 → 𝑤 ∈ Word 𝑆 ) ) |
6 |
1 2 5
|
mp2b |
⊢ ( 𝑤 = 〈“ 𝐴 ”〉 → 𝑤 ∈ Word 𝑆 ) |
7 |
|
fveq2 |
⊢ ( 𝑤 = 〈“ 𝐴 ”〉 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 〈“ 𝐴 ”〉 ) ) |
8 |
7
|
oveq1d |
⊢ ( 𝑤 = 〈“ 𝐴 ”〉 → ( ( ♯ ‘ 𝑤 ) − 1 ) = ( ( ♯ ‘ 〈“ 𝐴 ”〉 ) − 1 ) ) |
9 |
|
s1len |
⊢ ( ♯ ‘ 〈“ 𝐴 ”〉 ) = 1 |
10 |
9
|
oveq1i |
⊢ ( ( ♯ ‘ 〈“ 𝐴 ”〉 ) − 1 ) = ( 1 − 1 ) |
11 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
12 |
10 11
|
eqtri |
⊢ ( ( ♯ ‘ 〈“ 𝐴 ”〉 ) − 1 ) = 0 |
13 |
8 12
|
eqtrdi |
⊢ ( 𝑤 = 〈“ 𝐴 ”〉 → ( ( ♯ ‘ 𝑤 ) − 1 ) = 0 ) |
14 |
13
|
oveq2d |
⊢ ( 𝑤 = 〈“ 𝐴 ”〉 → ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) = ( 0 ..^ 0 ) ) |
15 |
|
fzo0 |
⊢ ( 0 ..^ 0 ) = ∅ |
16 |
14 15
|
eqtrdi |
⊢ ( 𝑤 = 〈“ 𝐴 ”〉 → ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) = ∅ ) |
17 |
|
rzal |
⊢ ( ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) = ∅ → ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤 ‘ 𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) |
18 |
16 17
|
syl |
⊢ ( 𝑤 = 〈“ 𝐴 ”〉 → ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤 ‘ 𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) |
19 |
6 18
|
jca |
⊢ ( 𝑤 = 〈“ 𝐴 ”〉 → ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤 ‘ 𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) ) |
20 |
4 19
|
mpgbir |
⊢ 〈“ 𝐴 ”〉 ∈ { 𝑤 ∣ ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤 ‘ 𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) } |
21 |
|
df-upword |
⊢ UpWord 𝑆 = { 𝑤 ∣ ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤 ‘ 𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) } |
22 |
20 21
|
eleqtrri |
⊢ 〈“ 𝐴 ”〉 ∈ UpWord 𝑆 |