| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upwordsing.1 | ⊢ 𝐴  ∈  𝑆 | 
						
							| 2 |  | s1cl | ⊢ ( 𝐴  ∈  𝑆  →  〈“ 𝐴 ”〉  ∈  Word  𝑆 ) | 
						
							| 3 |  | elab6g | ⊢ ( 〈“ 𝐴 ”〉  ∈  Word  𝑆  →  ( 〈“ 𝐴 ”〉  ∈  { 𝑤  ∣  ( 𝑤  ∈  Word  𝑆  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) ( 𝑤 ‘ 𝑘 )  <  ( 𝑤 ‘ ( 𝑘  +  1 ) ) ) }  ↔  ∀ 𝑤 ( 𝑤  =  〈“ 𝐴 ”〉  →  ( 𝑤  ∈  Word  𝑆  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) ( 𝑤 ‘ 𝑘 )  <  ( 𝑤 ‘ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 4 | 1 2 3 | mp2b | ⊢ ( 〈“ 𝐴 ”〉  ∈  { 𝑤  ∣  ( 𝑤  ∈  Word  𝑆  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) ( 𝑤 ‘ 𝑘 )  <  ( 𝑤 ‘ ( 𝑘  +  1 ) ) ) }  ↔  ∀ 𝑤 ( 𝑤  =  〈“ 𝐴 ”〉  →  ( 𝑤  ∈  Word  𝑆  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) ( 𝑤 ‘ 𝑘 )  <  ( 𝑤 ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 5 |  | eleq1a | ⊢ ( 〈“ 𝐴 ”〉  ∈  Word  𝑆  →  ( 𝑤  =  〈“ 𝐴 ”〉  →  𝑤  ∈  Word  𝑆 ) ) | 
						
							| 6 | 1 2 5 | mp2b | ⊢ ( 𝑤  =  〈“ 𝐴 ”〉  →  𝑤  ∈  Word  𝑆 ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑤  =  〈“ 𝐴 ”〉  →  ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ 〈“ 𝐴 ”〉 ) ) | 
						
							| 8 | 7 | oveq1d | ⊢ ( 𝑤  =  〈“ 𝐴 ”〉  →  ( ( ♯ ‘ 𝑤 )  −  1 )  =  ( ( ♯ ‘ 〈“ 𝐴 ”〉 )  −  1 ) ) | 
						
							| 9 |  | s1len | ⊢ ( ♯ ‘ 〈“ 𝐴 ”〉 )  =  1 | 
						
							| 10 | 9 | oveq1i | ⊢ ( ( ♯ ‘ 〈“ 𝐴 ”〉 )  −  1 )  =  ( 1  −  1 ) | 
						
							| 11 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 12 | 10 11 | eqtri | ⊢ ( ( ♯ ‘ 〈“ 𝐴 ”〉 )  −  1 )  =  0 | 
						
							| 13 | 8 12 | eqtrdi | ⊢ ( 𝑤  =  〈“ 𝐴 ”〉  →  ( ( ♯ ‘ 𝑤 )  −  1 )  =  0 ) | 
						
							| 14 | 13 | oveq2d | ⊢ ( 𝑤  =  〈“ 𝐴 ”〉  →  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) )  =  ( 0 ..^ 0 ) ) | 
						
							| 15 |  | fzo0 | ⊢ ( 0 ..^ 0 )  =  ∅ | 
						
							| 16 | 14 15 | eqtrdi | ⊢ ( 𝑤  =  〈“ 𝐴 ”〉  →  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) )  =  ∅ ) | 
						
							| 17 |  | rzal | ⊢ ( ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) )  =  ∅  →  ∀ 𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) ( 𝑤 ‘ 𝑘 )  <  ( 𝑤 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝑤  =  〈“ 𝐴 ”〉  →  ∀ 𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) ( 𝑤 ‘ 𝑘 )  <  ( 𝑤 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 19 | 6 18 | jca | ⊢ ( 𝑤  =  〈“ 𝐴 ”〉  →  ( 𝑤  ∈  Word  𝑆  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) ( 𝑤 ‘ 𝑘 )  <  ( 𝑤 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 20 | 4 19 | mpgbir | ⊢ 〈“ 𝐴 ”〉  ∈  { 𝑤  ∣  ( 𝑤  ∈  Word  𝑆  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) ( 𝑤 ‘ 𝑘 )  <  ( 𝑤 ‘ ( 𝑘  +  1 ) ) ) } | 
						
							| 21 |  | df-upword | ⊢ UpWord  𝑆  =  { 𝑤  ∣  ( 𝑤  ∈  Word  𝑆  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) ( 𝑤 ‘ 𝑘 )  <  ( 𝑤 ‘ ( 𝑘  +  1 ) ) ) } | 
						
							| 22 | 20 21 | eleqtrri | ⊢ 〈“ 𝐴 ”〉  ∈  UpWord  𝑆 |