Metamath Proof Explorer


Theorem upwordsing

Description: Singleton is an increasing sequence for any compatible range. (Contributed by Ender Ting, 21-Nov-2024)

Ref Expression
Hypothesis upwordsing.1 𝐴𝑆
Assertion upwordsing ⟨“ 𝐴 ”⟩ ∈ UpWord 𝑆

Proof

Step Hyp Ref Expression
1 upwordsing.1 𝐴𝑆
2 s1cl ( 𝐴𝑆 → ⟨“ 𝐴 ”⟩ ∈ Word 𝑆 )
3 elab6g ( ⟨“ 𝐴 ”⟩ ∈ Word 𝑆 → ( ⟨“ 𝐴 ”⟩ ∈ { 𝑤 ∣ ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) } ↔ ∀ 𝑤 ( 𝑤 = ⟨“ 𝐴 ”⟩ → ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) ) ) )
4 1 2 3 mp2b ( ⟨“ 𝐴 ”⟩ ∈ { 𝑤 ∣ ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) } ↔ ∀ 𝑤 ( 𝑤 = ⟨“ 𝐴 ”⟩ → ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) ) )
5 eleq1a ( ⟨“ 𝐴 ”⟩ ∈ Word 𝑆 → ( 𝑤 = ⟨“ 𝐴 ”⟩ → 𝑤 ∈ Word 𝑆 ) )
6 1 2 5 mp2b ( 𝑤 = ⟨“ 𝐴 ”⟩ → 𝑤 ∈ Word 𝑆 )
7 fveq2 ( 𝑤 = ⟨“ 𝐴 ”⟩ → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ⟨“ 𝐴 ”⟩ ) )
8 7 oveq1d ( 𝑤 = ⟨“ 𝐴 ”⟩ → ( ( ♯ ‘ 𝑤 ) − 1 ) = ( ( ♯ ‘ ⟨“ 𝐴 ”⟩ ) − 1 ) )
9 s1len ( ♯ ‘ ⟨“ 𝐴 ”⟩ ) = 1
10 9 oveq1i ( ( ♯ ‘ ⟨“ 𝐴 ”⟩ ) − 1 ) = ( 1 − 1 )
11 1m1e0 ( 1 − 1 ) = 0
12 10 11 eqtri ( ( ♯ ‘ ⟨“ 𝐴 ”⟩ ) − 1 ) = 0
13 8 12 eqtrdi ( 𝑤 = ⟨“ 𝐴 ”⟩ → ( ( ♯ ‘ 𝑤 ) − 1 ) = 0 )
14 13 oveq2d ( 𝑤 = ⟨“ 𝐴 ”⟩ → ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) = ( 0 ..^ 0 ) )
15 fzo0 ( 0 ..^ 0 ) = ∅
16 14 15 eqtrdi ( 𝑤 = ⟨“ 𝐴 ”⟩ → ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) = ∅ )
17 rzal ( ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) = ∅ → ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) )
18 16 17 syl ( 𝑤 = ⟨“ 𝐴 ”⟩ → ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) )
19 6 18 jca ( 𝑤 = ⟨“ 𝐴 ”⟩ → ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) )
20 4 19 mpgbir ⟨“ 𝐴 ”⟩ ∈ { 𝑤 ∣ ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) }
21 df-upword UpWord 𝑆 = { 𝑤 ∣ ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) }
22 20 21 eleqtrri ⟨“ 𝐴 ”⟩ ∈ UpWord 𝑆