Metamath Proof Explorer


Theorem upwordsing

Description: Singleton is an increasing sequence for any compatible range. (Contributed by Ender Ting, 21-Nov-2024)

Ref Expression
Hypothesis upwordsing.1 A S
Assertion upwordsing ⟨“ A ”⟩ UpWord S

Proof

Step Hyp Ref Expression
1 upwordsing.1 A S
2 s1cl A S ⟨“ A ”⟩ Word S
3 elab6g ⟨“ A ”⟩ Word S ⟨“ A ”⟩ w | w Word S k 0 ..^ w 1 w k < w k + 1 w w = ⟨“ A ”⟩ w Word S k 0 ..^ w 1 w k < w k + 1
4 1 2 3 mp2b ⟨“ A ”⟩ w | w Word S k 0 ..^ w 1 w k < w k + 1 w w = ⟨“ A ”⟩ w Word S k 0 ..^ w 1 w k < w k + 1
5 eleq1a ⟨“ A ”⟩ Word S w = ⟨“ A ”⟩ w Word S
6 1 2 5 mp2b w = ⟨“ A ”⟩ w Word S
7 fveq2 w = ⟨“ A ”⟩ w = ⟨“ A ”⟩
8 7 oveq1d w = ⟨“ A ”⟩ w 1 = ⟨“ A ”⟩ 1
9 s1len ⟨“ A ”⟩ = 1
10 9 oveq1i ⟨“ A ”⟩ 1 = 1 1
11 1m1e0 1 1 = 0
12 10 11 eqtri ⟨“ A ”⟩ 1 = 0
13 8 12 eqtrdi w = ⟨“ A ”⟩ w 1 = 0
14 13 oveq2d w = ⟨“ A ”⟩ 0 ..^ w 1 = 0 ..^ 0
15 fzo0 0 ..^ 0 =
16 14 15 eqtrdi w = ⟨“ A ”⟩ 0 ..^ w 1 =
17 rzal 0 ..^ w 1 = k 0 ..^ w 1 w k < w k + 1
18 16 17 syl w = ⟨“ A ”⟩ k 0 ..^ w 1 w k < w k + 1
19 6 18 jca w = ⟨“ A ”⟩ w Word S k 0 ..^ w 1 w k < w k + 1
20 4 19 mpgbir ⟨“ A ”⟩ w | w Word S k 0 ..^ w 1 w k < w k + 1
21 df-upword UpWord S = w | w Word S k 0 ..^ w 1 w k < w k + 1
22 20 21 eleqtrri ⟨“ A ”⟩ UpWord S